Prove: $\sqrt{5}$ is irrational.
Proof by Contradiction:
Suppose $\sqrt{5}$ is rational. There then exists $\mathrm{a}, \mathrm{b} 0 \mathrm{Z}^{+}$such that $\mathrm{b}>0$ and
(*) $\sqrt{5}=\frac{a}{b}$.
Squaring both sides of $\left(^{*}\right)$ gives $5=\frac{a^{2}}{b^{2}}$ or equivalently,
(**) $\quad 5 b^{2}=a^{2}$.
Since 5 is a prime factor of a^{2}, by $3.3 / \# 34$ the exponent of 5 in the prime factorization of a^{2} must be even. But, by $3.3 / \# 34$ again and properties of exponents, then 5 must appear to an odd power in the prime factorization of $5 b^{2}$. This contradicts the Unique Factorization Theorem - the powers of 5 must be the same number on both sides of $\left({ }^{* *}\right)$.

Hence our assumption that $\sqrt{5}$ is rational must be false, and therefore $\sqrt{5}$ is irrational.

