Difference Equations \& Functional Equations

1. Consider the sequence: $3,8,13,18, \ldots$
a. The first term is \qquad . We will denote this by $a_{1}=3$.
b. The second term is \qquad . We will denote this by $a_{2}=$ \qquad .
c. The third term is _. We will denote this by $a_{3}=$ \qquad
d. The fourth term is the third term plus \qquad . We write $a_{4}=a_{3}+$ \qquad .

$$
\text { So, } \mathbf{a}_{4}=
$$

\qquad
e. The fifth term is the fourth term plus \qquad . We write $a_{5}=a_{4}+$ \qquad .
So, $\mathrm{a}_{5}=$ \qquad .
f. $\quad a_{6}=a_{5}+$ \qquad = \qquad .
g. The next term in the sequence is always the previous term plus \qquad .
k. The $n^{\text {th }}$ term is the $(n-1)^{\text {st }}$ term plus \qquad .
l. $a_{n}=a_{n-1}+$ \qquad . (This is called a difference equation.)

This sequence can be defined by recursion via a difference equation:

$$
\begin{aligned}
& \mathbf{a}_{1}=3 \text { and, } \\
& \mathbf{a}_{n}=a_{n-1}+5 \text { for } n \geq 1 .
\end{aligned}
$$

This sequence can also be defined explicitly by the functional equation

$$
a_{n}=5 n-2 .
$$

2. Consider the sequence in the following table.

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7
$\mathbf{b}_{\mathbf{n}}$	5	$\mathbf{9}$	13	17	21		

a. Complete the table.
b. Is this an arithmetic sequence? Why or why not?
c. Define the sequence recursively using a difference equation.
d. Define the sequence explicitly using a functional equation.
3. Consider the sequence in the following table. Here we start with $\mathbf{n}=\mathbf{0}$.

\mathbf{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
c_{n}	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 2 . 5}$			

$1^{\text {st }}$ differences:

n	$\mathbf{0}$	$\mathbf{1}$	2	3	4	5	6
c_{n}	32	40	50	62.5			

Ratio $\frac{c_{n}}{c_{n-1}}$:
a. Complete the table.
b. Is this an arithmetic sequence? (Why or why not?)
c. A sequence in which each successive term is obtained by multiplying the previous term by a fixed number is called a geometric sequence. The fixed number is called the common ratio. Is the sequence of this example a geometric sequence? If so what is its common ratio?
d. Define this sequence recursively using a difference equation.
e. Define this sequence explicitly using a functional equation.
4. Consider the sequence in the following table.

\mathbf{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{d}_{\mathbf{n}}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{2 0}$	$\mathbf{3 7}$	$\mathbf{6 0}$	$\mathbf{8 9}$			

$1^{\text {st }}$ differences:
$2^{\text {nd }}$ differences:
a. Complete the table.
b. Define the sequence recursively using a difference equation.
c. Later we will define the sequence explicitly using a functional equation.

