Figurate numbers can be represented by dots arranged in the shape of certain geometric figures. For example, the 1st three *rectangular numbers* are shown below.

1. Consider the sequence of *rectangular numbers* whose 1st three terms are shown below.

				٠	٠	٠	٠	
	٠	٠	•	٠	٠	٠	٠	
• •	٠	٠	٠	٠	٠	٠	٠	
2		6			1	2		

Find the next three rectangular numbers by drawing the corresponding arrays. Let R_n denote the nth rectangular number. Complete the table below and find R_{10} and R_{20} . Try to find a rule for finding R_n for any value of n.

n	1	2	3	4	5	6	7	8	9	10	11
R _n											

2. The 1st four *triangular numbers* are shown below.

Determine the next three triangular numbers by drawing the corresponding trianglular arrays. Let T_n denote the n^{th} triangular number. Complete the table below and find T_{10} and T_{20} . Try to find a rule for finding T_n for any value of n.

n	1	2	3	4	5	6	7	8	9	10	11
T _n											

3. The 1st four *square numbers* are shown below.

			• • • •
		• • •	• • • •
	• •	• • •	• • • •
•	• •	• • •	• • • •
1	4	9	16

Suppose we denote the n^{th} square number by S_n . Write a rule for determining S_n for any n.

To the ancient Greeks, the square root of a number in this sequence was the number of dots along one side of the square that represents the number. For non-square natural numbers, they used a clever technique to estimate the square roots. This technique is illustrated below.

• • • • •	
•••••	<u>•</u> • •
0 0 0 0	• •
$\sqrt{11} pprox 3rac{2}{7}$	$\sqrt{8} \approx 2\frac{4}{5}$

Use this technique to arrive at the approximation $[\sqrt{22}] \approx 4^6/_9$.