Figurate numbers can be represented by dots arranged in the shape of certain geometric figures. For example, the 1st three rectangular numbers are shown below.

1. Consider the sequence of rectangular numbers whose 1st three terms are shown below.

Find the next three rectangular numbers by drawing the corresponding arrays. Let R_{n} denote the $n^{\text {th }}$ rectangular number. Complete the table below and find R_{10} and R_{20}. Try to find a rule for finding R_{n} for any value of n.

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
$\mathbf{R}_{\mathbf{n}}$											

2. The 1st four triangular numbers are shown below.

Determine the next three triangular numbers by drawing the corresponding trianglular arrays. Let T_{n} denote the $n^{\text {th }}$ triangular number. Complete the table below and find T_{10} and T_{20}. Try to find a rule for finding T_{n} for any value of \mathbf{n}.

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
$\mathbf{T}_{\mathbf{n}}$											

3. The 1st four square numbers are shown below.

Suppose we denote the $n^{\text {th }}$ square number by S_{n}. Write a rule for determining $\mathbf{S}_{\mathbf{n}}$ for any \mathbf{n}.

To the ancient Greeks, the square root of a number in this sequence was the number of dots along one side of the square that represents the number. For non-square natural numbers, they used a clever technique to estimate the square roots. This technique is illustrated below.

$$
\begin{aligned}
& \begin{array}{lll|l}
* & * & * & * \\
+ & * & * & * \\
* & * & * & 0 \\
\hline & 0 & 0 & 0
\end{array} \\
& \sqrt{11} \approx 3 \frac{2}{7} \\
& \begin{array}{ll}
* & * \\
+ & * \\
\hline & *
\end{array} \\
& \sqrt{8} \approx 2 \frac{4}{5}
\end{aligned}
$$

Use this technique to arrive at the approximation $[\sqrt{ } 22] \approx 4 / 9$.

