a. Let XO1 = percentage of Oak cabinets assigned to cabinetmaker 1

XO2 = percentage of Oak cabinets assigned to cabinetmaker 2

XO3 = percentage of Oak cabinets assigned to cabinetmaker 3

XC1 = percentage of Cherry cabinets assigned to cabinetmaker 1

XC2 = percentage of Cherry cabinets assigned to cabinetmaker 2

XC3 = percentage of Cherry cabinets assigned to cabinetmaker 3

MINIMIZE $1800\text{XO}1+1764\text{XO}2+1650\text{XO}3+2160\text{XC}1+2016\text{XC}2+1925\text{XC}3}$ S.T. XO1, XO2, XO3, XC1, XC@, XC3 \geq 0 AND

1) 1XO1 + 1XO2 + 1XO3 = 12) 1XC1 + 1XC2 + 1XC3 = 13) 50XO1 + 60XC1 < 404) 42XO2 + 48XC2 < 305) 30XO3 + 35XC3 < 35

OPTIMAL SOLUTION: Objective Function Value =\$3672.500

Variable	Value	Reduced Costs
X01	0.271	0.000
XO2	0.000	37.500
XO3	0.729	0.000
XC1	0.000	60.000
XC2	0.625	0.000
XC3	0.375	0.000
Constraint	Slack/Surplus	Dual Prices
1	0.000	-1800.000
2	0.000	-2100.000
3	26.458	0.000
4	0.000	1.750
5	0.000	5.000
OBJECTIVE COEFFICIENT	Γ RANGES	

Variable	Lower Limit	Current Value	Upper Limit
XO1	1728.000	1800.000	1851.429
XO2	1726.500	1764.000	No Upper Limit
XO3	1598.571	1650.000	1686.735
XC1	2100.000	2160.000	No Upper Limit
XC2	No Lower Limit	2016.000	2058.857
XC3	1882.143	1925.000	1985.000

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	0.729	1.000	1.529
2	0.768	1.000	1.454
3	13.542	40.000	No Upper Limit
4	8.229	30.000	41.143
5	19.125	35.000	43.125

	Cabinetmaker	Cabinetmaker	Cabinetmaker
	1		<u> </u>
Oak	O1 = 0.271	O2 = 0.000	O3 = 0.729
Cherry	C1 = 0.000	C2 = 0.625	C3 = 0.375

Total Cost = \$3672.50

- c. Since cabinetmaker 1 has a slack of 26.458 hours, having additional hours available will not change the optimal solution. Alternatively, since the dual price for constraint 1 is 0, increasing the right hand side of constraint 1 will not change the value of the optimal solution.
- d. The dual price for constraint 2 is 1.750. The upper limit on the range of feasibility is 41.143. Therefore, each additional hour of time for cabinetmaker 2 will reduce total cost by \$1.75 per hour, up to a maximum of 41.143 hours. So, if cabinetmaker 2 has additional hours available, the optimal solution will change.
- e. If cabinetmaker 2 reduced its cost to \$38 per hour, the new objective function coefficients for XO2 and XC2 are 42(38) = 1596 and 48(38) = 1824, respectively. The optimal solution does not change but the total cost decreases to \$3552.50.