Ch4/\#25
We will take note of the times the two full-time employees work and then determine the number of part-time employees we need each hour.

Time	Number of Part-Time Employees Needed
11:00am-Noon	8
Noon-1:00pm	8
1:00pm-2:00pm	7
2:00pm-3:00pm	1
3:00pm-4:00pm	2
4:00pm-5:00pm	1
$5: 00 \mathrm{pm}-6: 00 \mathrm{pm}$	5
6:00pm-7:00pm	10
7:00pm-8:00pm	10
8:00pm-9:00pm	6
9:00pm-10:00pm	6

Let
$\mathrm{x}_{1}=$ the number of part-time employees starting a four-hour shift at 11:00 am
$\mathrm{x}_{2}=$ the number of part-time employees starting a four-hour shift at Noon
$\mathrm{x}_{8}=$ the number of part-time employees
starting a four-hour shift at $6: 00 \mathrm{pm}$
Part-time employees are paid an average of $\$ 7.60$ per hour and each of them works a four hour shift; so the daily cost of part-time help is $\$ 4(7.60)\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\right.$ x_{8})

Our Model:

Minimize $\quad \sum_{i=1}^{8} 30.40 x_{i}$
s.t. $x_{1}, x_{2}, \ldots, x_{8} \geq 0$ and

x_{1}	≥ 8
$\mathrm{x}_{1}+\mathrm{x}_{2}$	≥ 8
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}$	≥ 7
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}$	≥ 1
$\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}$	≥ 2
$\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}+\mathrm{x}_{6}$	≥ 1
$\mathrm{x}_{4}+\mathrm{x}_{5}+\mathrm{x}_{6}+\mathrm{x}_{7}$	≥ 5
$\mathrm{x}_{5}+\mathrm{x}_{6}+\mathrm{x}_{7}+\mathrm{x}_{8}$	≥ 10
$\mathrm{x}_{6}+\mathrm{x}_{7}+\mathrm{x}_{8}$	≥ 10
$\mathrm{x}_{7}+\mathrm{x}_{8}$	≥ 6
x_{8}	≥ 6

Employing the Management Scientist software we obtain an optimal solution of $\mathrm{x}_{1}=8, \mathrm{x}_{2}=0, \mathrm{x}_{3}=0, \mathrm{x}_{4}=0, \mathrm{x}_{5}=2, \mathrm{x}_{6}=0, \mathrm{x}_{7}=4, \mathrm{x}_{8}=6$ which optimizes the objective function at 608.
a) So a minimum-cost schedule for part-time employees is to have 8 such employees working from 11:00am-3:00pm, two such employees working from 3:00pm-7:00pm, four such employees working from 5:00pm-9:00pm, and six such employees working from 6:00pm-10:00pm.
b) Under the prescribed schedule the total daily payroll for part-time employees is $\$ 608$ and four part-time shifts are needed. Since the prescribed schedule created a surplus of 16 employee hours each day, it looks like a desirable cost saving move would be to create some three-hour shifts.

Introducing the possibility of three-hour shifts leads to the creation of a revised model.

Let

$\mathrm{x}_{9}=$ the number of part-time employees starting a three-hour shift at 11:00 am
$\mathrm{x}_{10}=$ the number of part-time employees starting a three-hour shift at Noon :
$\mathrm{x}_{17}=$ the number of part-time employees starting a three-hour shift at 7:00pm
The daily cost of each four-hour employee is $\$ 30.40$ and the daily cost of each three-hour employee is $\$ 22.80$. So our revised model is as formulated below.

Minimize $\quad \sum_{i=1}^{8} 30.40 x_{i}+\sum_{i=9}^{17} 22.80 x_{i}$
s.t. $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{17} \geq 0$ and

$$
\begin{aligned}
& \mathrm{x}_{1} \quad+\mathrm{x}_{9} \geq 8 \\
& \mathrm{x}_{1}+\mathrm{x}_{2} \quad+\mathrm{x}_{9}+\mathrm{x}_{10} \quad \geq 8 \\
& \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \quad+\mathrm{x}_{9}+\mathrm{x}_{10}+\mathrm{x}_{11} \quad \geq 7 \\
& \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4} \quad+\mathrm{x}_{10}+\mathrm{x}_{11}+\mathrm{x}_{12} \quad \geq 1 \\
& \mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5} \\
& x_{3}+x_{4}+x_{5}+x_{6} \\
& x_{4}+x_{5}+x_{6}+x_{7} \\
& x_{5}+x_{6}+x_{7}+x_{8} \\
& x_{6}+x_{7}+x_{8} \\
& \mathrm{x}_{7}+\mathrm{x}_{8} \\
& +\mathrm{x}_{11}+\mathrm{x}_{12}+\mathrm{x}_{13} \quad \geq 2 \\
& +\mathrm{x}_{12}+\mathrm{x}_{13}+\mathrm{x}_{14} \quad \geq 1 \\
& +\mathrm{x}_{13}+\mathrm{x}_{14}+\mathrm{x}_{15} \geq 5 \\
& +\mathrm{x}_{14}+\mathrm{x}_{15}+\mathrm{x}_{16} \geq 10 \\
& +\mathrm{x}_{15}+\mathrm{x}_{16}+\mathrm{x}_{17} \geq 10 \\
& +x_{16}+x_{17} \geq 6 \\
& \mathrm{x}_{8} \quad+\mathrm{x}_{17} \geq 6
\end{aligned}
$$

Employing the Management Scientist software we obtain an optimal solution of
$x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=0, x_{8}=6, x_{9}=8, x_{10}=0, x_{11}=1, x_{12}=0, x_{13}=1, x_{14}=0, x_{15}=4$, $\mathrm{x}_{16}=0$, and $\mathrm{x}_{17}=0$ which optimizes the objective function at 501.60
c) In this case we need five part-time shifts and the associated daily cost of part-time workers is reduced to $\$ 501.60$ - a daily savings of $\$ 106.40$. The revised schedule is to have eight workers assigned to the three-hour 11:00am-2:00pm shift, one worker assigned to the three-hour 1:00pm4:00pm shift, one worker assigned to the three-hour $3: 00 \mathrm{pm}-6: 00 \mathrm{pm}$ shift, four workers assigned to the three-hour 5:00pm-8:00pm shift, and six workers assigned to the four-hour 6:00pm-10:00pm shift.

