A Standard Form of the LP Model

Choose x_1, x_2, \ldots, x_n so as to

Maximize $Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$

Subject to

 $\begin{array}{l} a_{11}+a_{12}x_2+\ldots+a_{1n}x_n=b_1\\ a_{21}+a_{22}x_2+\ldots+a_{2n}x_n=b_2\\ &\vdots\\ a_{m1}+a_{m2}+\ldots+a_{mn}x_n=b_m, \end{array}$

and $x_1, x_2, \ldots, x_n \ge 0$.

Other Forms

Minimizing rather than maximizing the objective function Some constraints with greater-than-or-equal-to inequality Some constraints in less-than-or-equal-to form Deleting nonnegativity constraints for some decision variables

Some Terminology

A **feasible solution** is a solution for which *all* the constraints are satisfied.

An **optimal solution** is a feasible solution that has the *most favorable associated value* of the objective function.

A **basic solution** is a solution with no more than m of the variables assigned nonzero values. (Those variables are basic variables.)

A **basic feasible solution** is a feasible solution with no more than m of the variables assigned positive values.

A **degenerate basic feasible** solution has fewer than m of the variables assigned positive values. **A nondegenerate basic feasible** solution is a basic feasible solution with exactly m variables assigned positive values.

Assumptions of LP

Proportionality – The contribution to the objective function and the amount of resources used in each constraint are proportional to the value of each decision variable.

Additivity – The value of the objective function and the total resources used can be found by summing the objective function contribution and the resources used for all decision variables.

Divisibility – The decision variables are continuous.

Certainty – The parameters of the model (the a_{ij} , b_i , and c_j) are known constants.

The Assumptions in Perspective

Mathematical models are *idealized representations* of real problems (situations). In many real applications *almost none* of the assumptions will hold completely.

Special Cases

1. Maximize $Z = 2x_1 + 2x_2$ st $1x_1 + 1x_2 \le 6$ $-1x_1 + 2x_2 \le 6$ $1x_2 \ge 1$, and $x_1, x_2 \ge 0$.

2. Maximize $Z = -2x_1 + 1x_2$ st

 $\begin{array}{l} 1x_1 + 1x_2 \leq 6 \\ -1x_1 + 2x_2 \leq 6 \\ 1x_2 \geq 1, \end{array}$ and $x_1, x_2 \geq 0.$

3. Maximize $Z = 2x_1 + 2x_2$ st

 $\begin{array}{l} 1x_1 + 1x_2 \leq 6 \\ -1x_1 + 2x_2 \geq 6 \\ 1x_2 \leq 1, \end{array}$ and $x_1, x_2 \geq 0.$

4. Movir

 $\begin{array}{l} \text{Maximize } Z = 2x_1 + 2x_2 \\ \text{st} \end{array}$

 $\begin{array}{c} 1x_1 + 1x_2 \geq 6 \\ -1x_1 + 2x_2 \geq 6 \\ 1x_2 \geq 1, \end{array}$ and $x_1, x_2 \geq 0.$

