A Standard Form of the LP Model

Choose $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ so as to

$$
\text { Maximize } Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

Subject to

$$
\begin{gathered}
a_{11}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
: \\
a_{m 1}+a_{m 2}+\ldots+a_{m n} x_{n}=b_{m},
\end{gathered}
$$

and $x_{1}, x_{2}, \ldots, x_{n} \geq 0$.

Other Forms

Minimizing rather than maximizing the objective function
Some constraints with greater-than-or-equal-to inequality
Some constraints in less-than-or-equal-to form
Deleting nonnegativity constraints for some decision variables

Some Terminology

A feasible solution is a solution for which all the constraints are satisfied.
An optimal solution is a feasible solution that has the most favorable associated value of the objective function.
A basic solution is a solution with no more than m of the variables assigned nonzero values. (Those variables are basic variables.)
A basic feasible solution is a feasible solution with no more than m of the variables assigned positive values.
A degenerate basic feasible solution has fewer than m of the variables assigned positive values. A nondegenerate basic feasible solution is a basic feasible solution with exactly m variables assigned positive values.

Assumptions of LP

Proportionality - The contribution to the objective function and the amount of resources used in each constraint are proportional to the value of each decision variable.
Additivity - The value of the objective function and the total resources used can be found by summing the objective function contribution and the resources used for all decision variables.
Divisibility - The decision variables are continuous.
Certainty - The parameters of the model (the $\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{\mathrm{i}}$, and c_{j}) are known constants.

The Assumptions in Perspective

Mathematical models are idealized representations of real problems (situations).
In many real applications almost none of the assumptions will hold completely.

Special Cases

1.

Maximize $Z=2 \mathrm{x}_{1}+2 \mathrm{x}_{2}$
st

$$
\begin{aligned}
1 \mathrm{x}_{1}+1 \mathrm{x}_{2} & \leq 6 \\
-1 \mathrm{x}_{1}+2 \mathrm{x}_{2} & \leq 6 \\
1 \mathrm{x}_{2} & \geq 1,
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$.
2.

Maximize $Z=-2 x_{1}+1 x_{2}$
st

$$
\begin{aligned}
1 \mathrm{x}_{1}+1 \mathrm{x}_{2} & \leq 6 \\
-1 \mathrm{x}_{1}+2 \mathrm{x}_{2} & \leq 6 \\
1 \mathrm{x}_{2} & \geq 1,
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$.
3.

Maximize $Z=2 x_{1}+2 \mathrm{x}_{2}$
st

$$
\begin{aligned}
1 x_{1}+1 x_{2} & \leq 6 \\
-1 x_{1}+2 x_{2} & \geq 6 \\
1 x_{2} & \leq 1,
\end{aligned}
$$

and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$.
4.

Maximize $\mathrm{Z}=2 \mathrm{x}_{1}+2 \mathrm{x}_{2}$
st

$$
\begin{aligned}
1 x_{1}+1 x_{2} & \geq 6 \\
-1 x_{1}+2 x_{2} & \geq 6 \\
1 x_{2} & \geq 1,
\end{aligned}
$$

and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$.

