A Model for Mr. Wheeler's Problem:

Assume c_{ij} , d_j , and s_i are nonnegative constants and $s_1 + s_2 - d_1 - d_2 - d_3 = 0$ for $1 \le i \le 2$; $1 \le j \le 3$.

Minimize $C = c_{11}x_{11} + c_{12}x_{12} + c_{13}x_{13} + c_{21}x_{21} + c_{22}x_{22} + c_{23}x_{23}$ st

X ₁₁	$+ x_{21}$		$\geq \mathbf{d}_1$
X ₁₂	+ x ₂₂		\geq d ₂
	X ₁₃	+ x ₂₃	\geq d ₃
$x_{11} + x_{12} + x_{13}$			$\leq s_1$
	$\mathbf{x}_{21} + \mathbf{x}_{22} + \mathbf{x}_{23}$		$\leq s_2$

and

 $x_{ij} \ge 0 \text{ for } 1 \le i \le 2; 1 \le j \le 3$

Show that under our assumptions our structural constrains can be equivalently written as a system of four equations in six unknowns.