A Model for Mr. Wheeler's Problem:

Assume $\mathrm{c}_{\mathrm{ij}}, \mathrm{d}_{\mathrm{j}}$, and s_{i} are nonnegative constants and $\mathrm{s}_{1}+\mathrm{s}_{2}-\mathrm{d}_{1}-\mathrm{d}_{2}-\mathrm{d}_{\mathbf{3}}=0$ for $1 \leq \mathrm{i} \leq \mathbf{2} ; \mathbf{1} \leq \mathrm{j} \leq 3$.

Minimize $C=c_{11} x_{11}+c_{12} x_{12}+c_{13} x_{13}+c_{21} x_{21}+c_{22} \mathbf{x}_{22}+c_{23} \mathbf{x}_{23}$ st

$$
\begin{aligned}
& \mathrm{x}_{11}+\mathrm{x}_{12}+\mathrm{x}_{13} \leq \mathrm{s}_{1} \\
& \mathbf{x}_{21}+\mathrm{X}_{22}+\mathrm{x}_{23} \leq \mathrm{S}_{2}
\end{aligned}
$$

and

$$
\mathrm{x}_{\mathrm{ij}} \geq \mathbf{0} \text { for } 1 \leq \mathrm{i} \leq 2 ; 1 \leq \mathrm{j} \leq \mathbf{3}
$$

Show that under our assumptions our structural constrains can be equivalently written as a system of four equations in six unknowns.

