Maximize $P = 2x_1 + 3x_2$ s.t. $x_1, x_2 \ge 0$ and $1x_1 + 2x_2 \le 6$

 $2x_1 + 1x_2 < 8$

Initial Simplex Tableau:

		X ₁	X ₂	\mathbf{s}_1	s ₂	
Basis	c _B	2	3	0	0	RHS
S ₁	0	1	2	1	0	6
S ₂	0	2	1	0	1	8
Zj		0	0	0	0	0
c _j - z _j		2	3	0	0	

The Final Tableau:

		X 1	X ₂	\mathbf{s}_1	s ₂	
Basis	c _B	2	3	0	0	RHS
X2	3	0	1	2/3	-1/3	4/3
X ₁	2	1	0	-1/3	2/3	10/3
Zj		2	3	4/3	1/3	32/3
c _j - z _j		0	0	-4/3	-1/3	

Optimal Solution: x₁ = 10/3, x₂ = 4/3, P = 32/3

We calculate the range of optimality for the objective function coefficient of x_1 by replacing the numerical value of the coefficient of x_1 with c_1 everywhere it occurs in the final simplex tableau.

		X 1	X ₂	$\mathbf{s_1}$	\mathbf{S}_2	
Basis	c _B	c ₁	3	0	0	RHS
X2	3	0	1	2/3	-1/3	4/3
X ₁	c ₁	1	0	-1/3	2/3	10/3
Zj		c ₁	3	$2 - c_1/3$	$-1 + 2c_1/3$	$4 + 10c_1/3$
c _j - z _j		0	0	$c_1/3 - 2$	$-2c_1/3 + 1$	

 $x_1 = 10/3$, $x_2 = 4/3$ will remain the optimal solution provided

 $c_1/3 - 2 \le 0$ and $-2c_1/3 + 1 \le 0$.

Finish the computation of the range of optimality for the objective function coefficient of x_1 in the space below.