Session 13

1. Consider the following linear programming problem

$$
\begin{array}{lrl}
\text { Max } & 8 \mathrm{X}+7 \mathrm{Y} & \\
\text { s.t. } & 15 \mathrm{X}+5 \mathrm{Y} & \leq 75 \\
& 10 \mathrm{X}+6 \mathrm{Y} & \leq 60 \\
& \mathrm{X}+\mathrm{Y} & \leq 8 \\
& X, Y & \geq 0
\end{array}
$$

a. Use a graph to show each constraint and the feasible region.
b. Identify the optimal solution point on your graph. What are the values of X and Y at the optimal solution?
c. What is the optimal value of the objective function?

2. Use this graph to answer the questions.

Max $\quad 20 \mathrm{X}+10 \mathrm{Y}$	
s.t.	
	$12 \mathrm{X}+15 \mathrm{Y} \leq 180\left(1^{\text {st }}\right.$ constraint $)$
	$15 \mathrm{X}+10 \mathrm{Y} \leq 150$
$\left(2^{\text {nd }}\right.$ constraint $)$	
	$3 \mathrm{X}-8 \mathrm{Y} \leq 0 \quad\left(3^{\text {rd }}\right.$ constraint $)$
	$\mathrm{X}, \mathrm{Y} \geq 0$

a. Lightly shade the feasible region.
b. Which point (A, B, C, D, or E) is optimal?
c. Which constraints are binding?
d. If $\mathrm{s}_{1} \mathrm{~s}_{2}$, and s_{3} the slack variables corresponding to constraints 1,2 , and 3 respectively, which slack variables are zero? What is the value of any non-zero slack variable?
3. The optimal solution of the linear programming problem is at the intersection of constraints 1 and 2 .

$$
\begin{array}{ll}
\text { Max } & 2 \mathrm{x}_{1}+\mathrm{x}_{2} \\
\text { s.t. } & 4 \mathrm{x}_{1}+1 \mathrm{x}_{2} \leq 400 \\
& 4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 600 \\
& 1 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 300 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array}
$$

a. Over what range can the coefficient of x_{1} vary before the current solution is no longer optimal?
b. Over what range can the coefficient of x_{2} vary before the current solution is no longer optimal?
c. Compute the dual prices for the three constraints.
4. The following linear programming problem has been solved by The Management Scientist. Use the output to answer the questions.

LINEAR PROGRAMMING PROBLEM

MAX $25 \mathrm{X} 1+30 \mathrm{X} 2+15 \mathrm{X} 3$
S.T.

1) $4 \mathrm{X} 1+5 \mathrm{X} 2+8 \mathrm{X} 3<1200$
2) $9 \times 1+15 \times 2+3 \times 3<1500$

OPTIMAL SOLUTION Objective Function Value $=\quad 4700.000$

Variable	Value	Reduced Costs
X1	140.000	0.000
X2	0.000	10.000
X3	80.000	0.000
Constraint	Slack/Surplus	Dual Prices
1	0.000	1.000
2	0.000	2.333

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
X1	19.286	25.000	45.000
X2	No Lower Limit	30.000	40.000
X3	8.333	15.000	50.000

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	666.667	1200.000	4000.000
2	450.000	1500.000	2700.000

a. Give the complete optimal solution.
b. Which constraints are binding?
c. What is the dual price for the second constraint? What interpretation does this have?
d. Over what range can the objective function coefficient of x_{2} vary before a new solution point becomes optimal?
e. By how much can the amount of resource 2 decrease before the dual price will change?
f. What would happen if the first constraint's right-hand side increased by 700 and the second's decreased by 350 ?
5. Set up the initial simplex tableau for the LP problem of exercise \#3 above.
6. A portion of a simplex tableau is

		x_{1}
Basis	c_{B}	20
x_{2}	25	.2
$\mathrm{~s}_{2}$	0	3
	z_{j}	5
	$\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}$	15

Give a complete explanation of the meaning of the $\mathrm{z}_{1}=5$ value as it relates to x_{2} and s_{2}.
7. Given the following initial simplex tableau

		x_{1}	x_{2}	x_{3}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	
Basis	c_{B}	5	8	12	0	0	0	
$\mathrm{~s}_{1}$	0	3	4	5	1	0	0	80
$\mathrm{~s}_{2}$	0	9	15	20	0	1	0	250
$\mathrm{~s}_{3}$	0	1	-1	2	0	0	0	20
	z_{j}	0	0	0	0	0	0	0
	$\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}$	5	8	12	0	0	0	

a. What variables form the basis?
b. What are the current values of the decision variables?
c. What is the current value of the objective function?
d. Which variable will be made positive next, and what will its value be?
e. Which variable that is currently positive will become 0 ?
f. What value will the objective function have next?
8. A simplex tableau is shown below.

		x_{1}	x_{2}	x_{3}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	
Basis	c_{B}	3	5	8	0	0	0	
$\mathrm{~s}_{1}$	0	3	6	0	1	0	-9	126
$\mathrm{~s}_{2}$	0	$-5 / 2$	$-1 / 2$	0	0	1	$-9 / 2$	45
x_{3}	8	$1 / 2$	$1 / 2$	1	0	0	$1 / 2$	18
	z_{j}	4	4	8	0	0	4	144
	$\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}$	-1	1	0	0	0	-4	

a. Do one more iteration of the simplex procedure.
b. Subsequent to that iteration, what is the current complete solution?
c. Is this solution optimal? Why or why not?

