- 1. Understand the following terms:
 - model
 - infeasible solution
 - objective function
 - constraint
 - feasible solution
- 2. Develop linear programming models for simple problems.
- 3. Solve two variable linear programming models by the graphical solution procedure.
- 4. Use and interpretation of slack and surplus variables.
- 5. Interpret the computer solution of a linear programming problem.
- 6. Explain how alternative optimal solutions, infeasibility and unboundedness can occur in linear programming problems.
- 7. Understand the following terms:
 - feasible region
 - constraint function
 - slack variable
 - objective function
 - standard form
 - solution
 - redundant constraint
 - optimal solution
 - extreme point
 - nonnegativity constraints
 - surplus variable
 - alternative optimal solutions
 - infeasibility
 - linear functions
 - unbounded
 - feasible solution
- 8. Conduct graphical sensitivity analysis for two variable linear programming problems.
- 9. Compute and interpret the range of optimality for objective function coefficients.
- 10. Compute and interpret the dual price for a constraint.
- 11. Understand the following terms:
 - sensitivity analysis
 - range of optimality
 - dual price
 - reduced cost
 - range of feasibility
 - 100 percent rule
 - sunk cost
 - relevant cost
- 12. Find basic and basic feasible solutions to systems of linear equations when the number of variables is greater than the number of equations.
- 13. Use slack variables to set up tableau form to get started with the simplex method.
- 14. Use the simplex method for solving linear programming maximization problems.

Practice Exercises:

Chapter 2: 1, 7, 10, 14, 17, 22, 33, 40, 41, 44

Chapter 3: 5, 6, 11, 12, 18, 19

Chapter 5: 1, 4, 5, 6, 15