Suppose sums of money equivalent to whole numbers of nickels are to be paid and the only coins used for payment are nickels and dimes, then if " n " represents a nickel and " d " represents a dime, then we can represent the ways in which sums of money may be paid out schematically.

Amount to be Paid	Possible Arrangements of Coins Making Payment	Number of Arrangements
5ϕ		
10ϕ		
15ϕ	nnn, nd, dn	3
20ϕ		
25ϕ		
30ϕ		
35ϕ		

Let A_{n} represent the number of arrangements of nickels and dimes we can use to pay out an amount equal to 5 n cents.
$\mathrm{A}_{1}=$
$\mathrm{A}_{2}=$
$\mathrm{A}_{3}=$
$\mathrm{A}_{4}=$
$\mathrm{A}_{5}=$
$\mathrm{A}_{6}=$
$\mathrm{A}_{7}=$
In general, $\mathrm{A}_{\mathrm{n}}=$

