## ACTIVITY 6.

## Individual Prediction and Observations

Cuisenaire rods come in ten colors and ten metric sizes as follows: $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}, 1 \mathrm{~cm} \times 1$ $\mathrm{cm} \times 2 \mathrm{~cm}, 1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 3 \mathrm{~cm}, \ldots, 1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 10 \mathrm{~cm}$. Look for a functional model for the relationship between a rods' longest dimension and its surface area. Right now make a sketch predicting what you think will be the shape of that function's graph.

Complete the following table

| Rod's | Longest | Surface | Change in |
| :---: | :---: | :---: | :---: |
| Color | Dimension | Area | Surface Area |
|  | $(\mathrm{cm})$ | (sq cm) |  |
| white | 1 |  |  |
| red | 2 |  |  |
| lt green | 3 |  |  |
| purple | 4 |  |  |
| yellow | 5 |  |  |
| dk green | 6 |  |  |
| black | 7 |  |  |
| brown | 8 |  |  |
| blue | 9 |  |  |
| orange | 10 |  |  |

Make a difference table for this data. What does the difference table suggest to you?

## Group Prediction and Observations

Discuss within your working group each individual's predictions. Prepare a graph and functional model representing the groups final prediction. Define the meaning of any symbols you introduce and record your functional rule and draw the graph in Figure 9.

