Introduction to Difference Equations

- 1. Consider the sequence: 2, 4, 6, 8, ...
 - We will denote this by $a_1 = 2$. The first term is _____. a. The second term is _____. We will denote this by $a_2 =$ _____. b. The third term is _____. We will denote this by $a_3 =$ ____. c. The fourth term is the third term plus _____. We write $a_4 = a_3 + ____.$ d. So, $a_4 = -$ The fifth term is the fourth term plus _____. We write $a_5 = a_4 +$ _____. e. So, $a_5 = ...$ f. $a_6 = a_5 + ___ = ___$. The next term in the sequence is always the current term plus _____. g. The (n+1)st term is the nth term plus _____ k. . $\mathbf{a}_{n+1} = \mathbf{a}_n +$ ____. (This is called a difference equation.) l.

This sequence can be defined by recursion via a difference equation:

$$a_1 = 2$$
 and,
 $a_{n+1} = a_n + 2$ for $n \ge 1$.

This sequence can also be defined explicitly by the functional equation

 $a_n = 2n$.

2. Consider the sequence in the following table.

Ν	1	2	3	4	5	6	7
b _n	3	8	13	18	23		

a. Complete the table.

b. Define the sequence recursively using a difference equation.

c. Define the sequence explicitly using a functional equation.

3. Consider the sequence in the following table. Here we start with n = 0.

n	0	1	2	3	4	5	6	7	8
c _n	5	7	13	23	37	55			

a. Complete the table.

- b. Define the sequence recursively using a difference equation.
- c. Define the sequence explicitly using a functional equation.

4. Consider the sequence in the following table.

n	0	1	2	3	4	5	6	7	8
dn	32	40	50	62.5	78.1	97.7			

- a. Assume that the values of d_n are rounded to the nearest 0.1 and complete the table.
- b. Define the sequence recursively using a difference equation.

c. Define the sequence explicitly using a functional equation.