Introduction to Difference Equations

1. Consider the sequence: $2,4,6,8, \ldots$
a. The first term is \qquad - We will denote this by $a_{1}=2$.
b. The second term is \qquad . We will denote this by $\mathbf{a}_{2}=$ \qquad .
c. The third term is \qquad . We will denote this by $a_{3}=$ \qquad .
d. The fourth term is the third term plus \qquad . We write $a_{4}=a_{3}+$ \qquad . So, $\mathbf{a}_{4}=$ \qquad .
e. The fifth term is the fourth term plus \qquad . We write $\mathbf{a}_{5}=\mathbf{a}_{4}+$ \qquad . So, $\mathbf{a}_{5}=$ \qquad -.
f. $\quad a_{6}=a_{5}+$ \qquad $=$ \qquad .
g. The next term in the sequence is always the current term plus \qquad .
k. The $(\mathrm{n}+1)$ st term is the nth term plus \qquad .
l. $\mathbf{a}_{\mathbf{n}+1}=\mathbf{a}_{\mathbf{n}}+$ \qquad . (This is called a difference equation.)

This sequence can be defined by recursion via a difference equation:

$$
\begin{aligned}
& a_{1}=2 \text { and, } \\
& a_{n+1}=a_{n}+2 \text { for } n \geq 1 .
\end{aligned}
$$

This sequence can also be defined explicitly by the functional equation

$$
a_{n}=2 n
$$

2. Consider the sequence in the following table.

\mathbf{N}	$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{b}_{\mathbf{n}}$	3	8	13	18	23		

a. Complete the table.
b. Define the sequence recursively using a difference equation.
c. Define the sequence explicitly using a functional equation.
3. Consider the sequence in the following table. Here we start with $\mathbf{n}=\mathbf{0}$.

\mathbf{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{c}_{\mathbf{n}}$	$\mathbf{5}$	7	13	23	37	55			

a. Complete the table.
b. Define the sequence recursively using a difference equation.
c. Define the sequence explicitly using a functional equation.
4. Consider the sequence in the following table.

\mathbf{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{d}_{\mathbf{n}}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 2 . 5}$	$\mathbf{7 8 . 1}$	$\mathbf{9 7 . 7}$			

a. Assume that the values of $\mathbf{d}_{\mathbf{n}}$ are rounded to the nearest 0.1 and complete the table.
b. Define the sequence recursively using a difference equation.
c. Define the sequence explicitly using a functional equation.

