Figurate numbers can be represented by dots arranged in the shape of certain geometric figures.

1. Consider the sequence of rectangular numbers whose 1st three terms are shown below.

Find the next three rectangular numbers by drawing the corresponding arrays. Let R_{n} denote the $\mathrm{n}^{\text {th }}$ rectangular number. Complete the table below and find R_{10} and R_{20}. Use the method of finite differences and determine rules for finding R_{n} for any value of n.

\mathbf{n}		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
\mathbf{R}_{n}												
$\Delta \mathbf{R}_{\mathrm{n}}$												
$\Delta \Delta \mathbf{R}_{\mathrm{n}}$												

Verbal Rule:

Difference Equation:

Functional Equation:
2. The 1st four triangular numbers are shown below.

Determine the next three triangular numbers by drawing the corresponding triangular arrays. Let T_{n} denote the $\mathrm{n}^{\text {th }}$ triangular number. Complete the table below and find T_{10} and T_{20}. Use the method of finite differences and determine rules for finding T_{n} for any value of n.

\mathbf{n}		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
\mathbf{T}_{n}												
$\Delta \mathbf{T}_{\mathrm{n}}$												
$\Delta \Delta \mathbf{T}_{\mathrm{n}}$												

Verbal Rule:

Difference Equation:

Functional Equation:
3. The 1st four square numbers are shown below.

Suppose we denote the $\mathrm{n}^{\text {th }}$ square number by S_{n}. Write rules for determining S_{n} for any n .

Verbal Rule:

Difference Equation:

Functional Equation:
4. We now consider the sequence of pentagonal numbers.

Suppose we denote the $n^{\text {th }}$ pentagonal number by P_{n}. Suppose we denote the $n^{\text {th }}$ square number by S_{n}. Write rules for determining S_{n} for any n.

\mathbf{n}		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
\mathbf{P}_{n}												
$\Delta \mathbf{P}_{\mathrm{n}}$												
$\Delta \Delta \mathbf{P}_{\mathrm{n}}$												

Verbal Rule:

Difference Equation:

Functional Equation:
5. Investigate the sequences of hexagonal, heptagonal, and octagonal numbers in a manner like we have been investigating the previous figurate numbers. Can you determine a general rule for finding the $\mathrm{n}^{\text {th }} \mathrm{k}$-gonal number?

Heptagonal

Octagonal

