Figurate Numbers

Figurate numbers can be represented by dots arranged in the shape of certain geometric figures.

1. Consider the sequence of *rectangular numbers* whose 1st three terms are shown below.

Find the next three rectangular numbers by drawing the corresponding arrays. Let R_n denote the nth rectangular number. Complete the table below and find R_{10} and R_{20} . Use the method of finite differences and determine rules for finding R_n for any value of n.

n	1	2	3	4	5	6	7	8	9	10	11
R _n											
$\Delta \mathbf{R}_{\mathbf{n}}$											
$\Delta \Delta \mathbf{R}_{\mathbf{n}}$											

Verbal Rule:

Difference Equation:

Functional Equation:

2. The 1st four *triangular numbers* are shown below.

Determine the next three triangular numbers by drawing the corresponding triangular arrays. Let T_n denote the nth triangular number. Complete the table below and find T_{10} and T_{20} . Use the method of finite differences and determine rules for finding T_n for any value of n.

n	1	2	3	4	5	6	7	8	9	10	11
T _n											
ΔT_n											
$\Delta \Delta T_n$											

Verbal Rule:

Difference Equation:

Functional Equation:

3. The 1st four *square numbers* are shown below.

Suppose we denote the n^{th} square number by S_n . Write rules for determining S_n for any n.

Verbal Rule:

Difference Equation:

Functional Equation:

4. We now consider the sequence of *pentagonal numbers*.

Suppose we denote the n^{th} pentagonal number by P_n . Suppose we denote the n^{th} square number by S_n . Write rules for determining S_n for any n.

n	1	2	3	4	5	6	7	8	9	10	11
Pn											
ΔP _n											
$\Delta \Delta P_n$											

Verbal Rule:

Difference Equation:

Functional Equation:

5. Investigate the sequences of hexagonal, heptagonal, and octagonal numbers in a manner like we have been investigating the previous figurate numbers. Can you determine a general rule for finding the nth k-gonal number?

