Some Kinds of Change and Some Models for Growth

Let
$$y = F(x)$$
 for $x \in [a, b]$.
Suppose, $y_1 = F(x_1)$ and $y_2 = F(x_2)$ for $x_1 < x_2$.

The change in x, $\Delta x = x_2 - x_1$, and the change in y, $\Delta y = y_2 - y_1$.

The average rate of change in y with respect to x over the interval $(x_1, x_2]$ is the ratio

$$\Delta y/\Delta x$$
.

The percent change in y over the interval $(x_1, x_2]$ is

$$\begin{array}{cccc} 100*\underline{[F(x_2)-F(x_1)]} & = 100*\underline{[y_2-y_1]} & = 100*\Delta y/y_1. \\ F(x_1) & y_1 \end{array}$$

The average proportionate growth rate is the ratio

$$\frac{[\Delta y/\Delta x]}{F(x_1)} = \frac{[\Delta y/\Delta x]}{v_1}$$

The average proportionate growth rate is frequently called the relative growth rate.

Suppose we examine the size of a population at equally spaced times t_0 , t_1 , t_2 , ... and we denote the size of the population at time t_k by y_k , that is $y(t_k) = y_k$, k = 0, 1, 2, ...

<u>Example 1 (linear model):</u> The size of a population increases by a fixed amount A in each time interval $(t_k, t_{k+1}], k = 0, 1, 2, ...$ Here we have the relation

$$y_{k+1} - y_k = A,$$
 $k = 0, 1, 2, ...$

or

$$y_{k+1} = y_k + A,$$
 $k = 0, 1, 2, ...$

In this example we can show that

$$y_k = Ak + x_0,$$
 $k = 0, 1, 2, ...$

<u>Example 2 (exponential model):</u> The size of the population increases by a fixed multiple of the beginning population size in each time interval $(t_k, t_{k+1}], k = 0, 1, 2, ...$ Here for some number r we have the relation

$$y_{k+1} - y_k = ry_k,$$
 $k = 0, 1, 2, ...$

or

$$y_{k+1} = y_k + ry_k = (1 + r) y_k$$
, $k = 0, 1, 2, ...$

In this example we can show that

$$y_k = (1 + r)^k y_0$$
, $k = 0, 1, 2, ...$

<u>Example 3 (logistic model):</u> Here we suppose that M is the maximum size of the population that can be maintained with the specific resources that are available and the relative growth rate is given by $c(M - y_k)$ for some constant c. Here we have the relation

$$\frac{y_{k+1} - y_k}{y_k} = c(M - y_k), \quad \mathbf{k} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \dots$$

or

$$y_{k+1} = y_k + cy_k (M - y_k), \quad \mathbf{k} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \dots$$

Exercises

- 1. Formulate linear and exponential models to try to fit the pattern of growth in the US population from 1790 to 1900.
- 2. Formulate a logistic model to fit the growth pattern for a sorghum plant.

	US Census Data		
	Date	Years	Population
		Since	(millions)
		1790	
n		t(n)	P(n)
0	1790	0	3.929
1	1800	10	5.308
2	1810	20	7.240
3	1820	30	9.638
4	1830	40	12.866
5	1840	50	17.069
6	1850	60	23.192
7	1860	70	31.443
8	1870	80	38.558
9	1880	90	50.156
10	1890	100	62.948
11	1900	110	75.996

Growth of a Sorghum Plant			
Days After	Weight		
Planting	in Grams		
t(k)	w(k)		
24	2		
32	5		
40	9		
48	15		
56	32		
64	50		
72	66		
80	72		
88	82		
96	83		