Principle of Mathematical Induction

Let P(n) be a predicate that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

1. P(a) is true.

2. For all integers $k \ge a$, if P(k) is true then P(k + 1) is true.

Then the statement

For all integers $n \ge a$, P(n)

is true.

Example: For any positive integer n, $1 + 3 + ... + (2n - 1) = n^2$

Proof Using the Principle of Mathematical Induction:

In this case we are trying to establish that for each positive integer n, P(n) is true where P(n) is given by $P(n): 1 + 3 + ... + (2n-1) = n^2$.

Basis Step: P(1) is true because $(2 \cdot 1 - 1) = 1 = 1^2$.

Inductive Step: Assume that P(k) is true for some positive integer $k \ge 1$. [*This is our inductive hypothesis.*] [*We must now show that* P(k + 1) *is true.*]

That is, we assume that

 $1 + 3 + ... + (2k - 1) = k^2$ for some [*arbitrary but fixed*] positive integer k.

Adding [2(k + 1) - 1] to both sides of the above equation, it follows that $1 + 3 + ... + (2k - 1) + [2(k + 1) - 1] = k^2 + [2(k + 1) - 1]$

Applying algebra to the right hand side we obtain $1+3+\ldots+(2k-1)+[2(k+1)-1] = k^2+2k+1$ $= (k+1)^2$

So, P(k + 1), or $1 + 3 + ... + (2k - 1) + [2(k + 1) - 1] = (k + 1)^2$, is true. We have shown that P(k) for some integer $k \ge 1$ implies P(k + 1). We have now established that P(1) is true and that for any $k \ge 1$, $P(k) \rightarrow P(k+1)$.

Consequently, by the Principle of Mathematical Induction, For any positive integer n, $1 + 3 + ... + (2n - 1) = n^2$.