
Reasoning and Proof Standard for Grades 6–8 

Instructional programs from prekindergarten through grade 12 should enable 
all students to—  

• recognize reasoning and proof as fundamental aspects of mathematics;  
• make and investigate mathematical conjectures;  
• develop and evaluate mathematical arguments and proofs;  
• select and use various types of reasoning and methods of proof.  

Reasoning is an integral part of doing mathematics. Students should enter the 
middle grades with the view that mathematics involves examining patterns and 
noting regularities, making conjectures about possible generalizations, and 
evaluating the conjectures. In grades 6–8 students should sharpen and extend 
their reasoning skills by deepening their evaluations of their assertions and 
conjectures and using inductive and deductive reasoning to formulate 
mathematical arguments. They should expand the audience for their 
mathematical arguments beyond their teacher and their classmates. They need 
to develop compelling arguments with enough evidence to convince someone 
who is not part of their own learning community. 

What should reasoning and proof look like in grades 6 through 8?  

In the middle grades, students should have frequent and diverse experiences 
with mathematics reasoning as they—  

• examine patterns and structures to detect regularities;  
• formulate generalizations and conjectures about observed regularities;  
• evaluate conjectures;  
• construct and evaluate mathematical arguments.  

Students should discuss their reasoning on a regular basis with the teacher and 
with one another, explaining the basis for their conjectures and the rationale for 
their mathematical assertions. Through these experiences, students should 
become more proficient in using inductive and deductive reasoning appropriately.  

Students can use inductive reasoning to search for mathematical relationships 
through the study of patterns. Consider an example from a classroom in which 
rising seventh-grade students were studying figurate numbers (drawn from 
classroom observation and partially described in Malloy [1997]). 

The teacher began by explaining triangular numbers and then asked the students 
to generate representations for the first five triangular numbers. The students 
visualized the structure of the numbers to » draw successive dot triangles, each 



time adding at the bottom a row containing one more dot than the bottom row in 
the previous triangle (see fig. 6.31). Next the teacher asked the students to 
predict (without drawing) how many dots would be needed for the next triangular 
number. Reflecting on what they had done to generate the sequence thus far, 
they quickly concluded that the sixth triangular number would have six more dots 
than the fifth triangular number. These students were engaged in recursive 
reasoning about the structure of this sequence of numbers, using the just-formed 
number to generate the next number. This approach was repeated for several 
more "next" numbers in the sequence, and it worked well. 

 
 
 
 
 
 
 
 
The teacher then asked the students to find the 100th term in the sequence. 
Most students knew that the value of the 100th term is 100 more than the value 
of the 99th term, but because they did not already know the value of the 99th 
term, they were not able to find the answer quickly. The teacher suggested that 
they make a chart to record their observations about triangular numbers and to 
look for a pattern or a relationship to help them find the 100th triangular number. 
The students began with a display that reflected what they had already observed 
(see fig. 6.32). They examined the display for additional patterns. Tamika 
commented that she thought there was a pattern relating the differences and the 
numbers. She explained that if the consecutive differences are multiplied, the 
product is twice the number that is "between" them in the display; for example, 
the product of 4 and 5 is twice as large as 10. 
 
 
 
 
 
 

The teacher asked the students to check to see if Tamika's observation was true 
for other numbers in the display. After they verified the observation, the teacher 
asked them to use this method to find the next triangular number. Some students 
were unable to see how it could be done, but Curtis used Tamika's observation 
as follows: "Using Tamika's method, the seventh number is (7)(8)/2, which is 28." 
Several students checked this answer by using the recursive method of adding 7 
to the sixth triangular number to find the seventh triangular number (21 + 7 = 28). 
The teacher then asked the students to check Tamika's method for the next few 
triangular numbers to verify that it worked in those instances. She next asked if 



Tamika's method could be used to find the 100th triangular number. Darnell said, 
"If Tamika is right, the hundredth triangular number should be (100)(101)/2." 

In general, the students agreed that the method of multiplying and dividing by 2 
was useful because it seemed to work and because it did not require knowing the 
nth term in order to find the (n + 1)th term. However, some students were not 
convinced that the method was correct. It lacked the intuitive appeal of the 
recursive method they used first, and it did not appear to have a mathematical 
basis. The teacher decided that it was worth additional class time to develop a 
mathematical argument to support Tamika's method. She began by asking 
students to notice that each triangular number is the sum of consecutive whole 
numbers, which they readily saw from the dot triangles. Then the teacher 
demonstrated Gauss's method for finding the sum of consecutive whole 
numbers, applying it to the first seven whole numbers. She asked the students to 
add the numbers from 1 to 7 to those in the reversed sequence, 7 to 1, as shown 
in figure 6.33, to see that the seventh triangular number—1 + 2 + 3 + 4 + 5 + 6 + 
7—could also be expressed as (7)(8)/2. After the students completed this 
exercise, the teacher asked them to express the general relationship in words. 
They struggled, but they came up with this general rule: If you want to find a 
particular triangular number, you multiply your number by the next number and 
divide by 2. The students wrote the rule this way: 
(number)(number + 1)/2. 

 
 
 
 
 
The example illustrates what reasoning and proof can look like in the middle 
grades. Although mathematical argument at this level lacks the formalism and 
rigor often associated with mathematical proof, it shares many of its important 
features, including formulating a plausible conjecture, testing the conjecture, and 
displaying the associated reasoning for evaluation by others. The teacher and 
students used inductive reasoning to reach a generalization. They noted 
regularities in a pattern (growth of triangular numbers), formulated a conjecture 
about the regularities (Tamika's rule), and developed and discussed a convincing 
argument about the truth of the conjecture. 

Middle-grades students can develop arguments to support their conclusions in 
varied topics, such as number theory, properties of geometric shapes, and 
probability. For example, students who encounter the rules of divisibility by 2 and 
by 3 in number theory know that even numbers are divisible by 2 and numbers 
whose digits add to a number divisible by 3 are divisible by 3. A teacher might 
ask students » to formulate a rule for divisibility by 6 and develop arguments to 
support their rule.  

Some students might begin by listing some multiples of 6: 12, 18, 24, and 30. 



They could examine the numbers and try to detect patterns resembling those in 
other rules they have learned. Students might observe that all the numbers are 
even, which allows them to infer divisibility by 2. They could also look at the sums 
of the digits of the multiples and notice that the sums of the digits are all divisible 
by 3, just as in the test for divisibility by 3. Noting that 2 • 3 = 6, they might 
conclude that if the number is divisible both by 2 and by 3, then it must be 
divisible by 6, which might lead them to form the following conjecture for 
determining whether a number is divisible by 6: Check to see if the number is 
even and if the sum of its digits is divisible by 3.  

The teacher should also challenge students to consider possible limitations of 
their reasoning. For example, she could ask them to use 12 as an example to 
consider whether it is always true that the product of two factors of a number is 
itself a factor of that number. The students should note that although 6 and 4 are 
both factors of 12, 6 • 4 is not. In this way, the teacher can help students become 
appropriately cautious in making inferences about divisibility on the basis of 
factors. Such an exploration should lead to the correct generalization that 
combining criteria for divisibility, which worked with divisibility by 6, works only 
when the two factors are relatively prime. 
 
 
 


