Chris,

It looks like you are taking a productive route to finding a solution. In the case where $n=8$, I think there are actually a few more triangles in the picture. You might check your addition. Some tips follow your notes below. Nice observations. Do you get the same pattern if $n=7$? If not, you might look at the cases where n is even and then the cases where n is odd.

Chris' notes:

Gen Eq (right side up) $\quad \Sigma\{(1+2+3+\ldots+n),(1+2+3+\ldots+(n-1)),(1+2+3+\ldots+(n-2)), \ldots,(1+2),(1)\}$
Gen Eq (up side down) $\quad \Sigma\{(1+2+3+\ldots+(n-1)),(1+2+3+\ldots+(n-3)),(1+2+3+\ldots+(n-5)), \ldots,(1+2+3),(1)\}$
Gen Eq (total) $\quad \Sigma\{\mathrm{Gen} \mathrm{Eq}$ (right side up), Gen Eq (up side down) $\}$

- No addend of the Sigmas may be negative

When $n=8$ (the one you handed out), the answer is 160 triangles.
Further suggestions/tips.
Case $\mathrm{n}=8$.

Size of sub-triangle
Number found in figure (\# with points up) + (\#with points down)
$1 \times 1 \times 1$

$$
(1+2+\ldots+8)+(1+2+\ldots+7)=64
$$

$2 \times 2 \times 2$
$3 \times 3 \times 3$
$4 \times 4 \times 4$
$5 \times 5 \times 5$
6x6x6
7 x 7 x 7
$(1+2+\ldots+7)+(1+2+\ldots+5)=43$
$(1+2+\ldots+6)+(1+2+3)=27$
$(1+2+\ldots+5)+1=16$
$(1+2+3+4)=10$
$(1+2+3)=6$
$(1+2)=3$
8 x 8 x 8
(1)
$=1$
So, in the case where $\mathrm{n}=8$, there are 170 triangles in the figure.
It looks like Chris has applied inductive reasoning using this case to conjecture a general solution. We might now try looking at those cases where $\mathrm{n}=1,2,3,4,5,6,7$ and see if we can capture the relevant relationship with an explicit formula. (Might we deduce a function T where $T(n)$ denotes the number of triangles in an nxnxn triangular array? We have seen that $\mathrm{T}(8)=170$.)

Using Chris' approach on those cases where n is even we get: $\mathrm{T}(2)=5, \mathrm{~T}(4)=27, \mathrm{~T}(6)=78, \mathrm{~T}(8)=170$, $\mathrm{T}(10)=315, \mathrm{~T}(12)=525$. In conversation, Chris suggested looking at differences to see if we could get some hint regarding properties of the function T we seek.

Consider the table below.

2	4		6		8		10		12
5	27		78		170		315		525
22		51		92		145		210	
	29		41		53		65		
		12		12		12			

Applying inductive reasoning, our third differences seem to be constant (not proved). Maybe T is a cubic polynomial (thrid derivative a constant). If so, we seek a, b, c, and d such that $T(n)=a n^{3}+b n^{2}+c n+d$.

We believe that $\mathrm{T}(2)=5, \mathrm{~T}(4)=27, \mathrm{~T}(6)=78$, and $\mathrm{T}(8)=170$. We might even assume that $\mathrm{T}(0)=0$. If $T(0)$ is 0 , then d must be $0-$ symplifying our problem!

Using what we believe to be true,
$\mathrm{T}(0)=0=\mathrm{a}(0)^{3}+\mathrm{b}(0)^{2}+\mathrm{c}(0)+\mathrm{d}$
$\mathrm{T}(2)=5=\mathrm{a}(2)^{3}+\mathrm{b}(2)^{2}+\mathrm{c}(2)+\mathrm{d}$
$\mathrm{T}(4)=27=\mathrm{a}(4)^{3}+\mathrm{b}(4)^{2}+\mathrm{c}(4)+\mathrm{d}$
$\mathrm{T}(6)=78=\mathrm{a}(6)^{3}+\mathrm{b}(6)^{2}+\mathrm{c}(6)+\mathrm{d}$
We have a system of equations. From the first equation, $d=0$. Hence we can reduce our problem to three equations.
$8 \mathrm{a}+4 \mathrm{~b}+2 \mathrm{c}=5$
$64 a+16 b+4 c=27$
$216 a+36 b+6 c=78$

Eliminating c from the last two equations we get
$48 \mathrm{a}+8 \mathrm{~b}=17$
$192 a+24 b=63$

Eliminating b from the third equation,
$48 \mathrm{a}=12$.

Letting $\mathrm{a}=2 / 8$ and back substituting we get $\mathrm{b}=5 / 8$ an $\mathrm{c}=2 / 8$.
Maybe for n even, $T(n)=\left[2 n^{3}+5 n^{2}+2 n\right] / 8$ or $T(n)=[n(2 n+1)(n+2)] / 8$.
Check it out! But does this function work for n odd?

