An *affine transformation* $T: \mathbb{R}^n \to \mathbb{R}^n$ has the form $T(\mathbf{v}) = A\mathbf{v} + \mathbf{b}$ where A is an $n \times n$ matrix and $\mathbf{b} \in \mathbb{R}^n$.

Example 1. Suppose for $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $T(\mathbf{v}) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Suppose S is the square with vertices

 $\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}$. Sketch both S and the image of S, *T*(S), under the transformation.

							1
	•	•	•			•	•
							:
							i .
 							<u>.</u>
							1
				•	•		•
							:
							i.
 !	·	!	·			!	
							1
				•	•		•
							:
							i .
	!	!	!			!	
 •							1
•	•	•	•			•	•
							:
							i.

Explain why, in general, affine transformations are not linear transformations.

An *isometry* preserves distances. So, a transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ will be an isometry provided $\|\mathbf{u} - \mathbf{v}\| = \|T(\mathbf{u}) - T(\mathbf{v})\|$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Is the transformation of Example 1 an isometry?

Example 2. Suppose for
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
, $T(\mathbf{v}) = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Suppose S is the square with

vertices $\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}$. Sketch both S and the image of S, *T*(S), under the transformation.

Is the transformation of Example 2 an isometry?

Example 3. Let S be the triangle with vertices $\mathbf{A} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $\mathbf{C} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Find an affine transformation *T* such that $T(\mathbf{A}) = \begin{bmatrix} 6 \\ 2 \end{bmatrix} = \mathbf{A}^*$, $T(\mathbf{B}) = \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \mathbf{B}^*$, and $T(\mathbf{C}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \mathbf{C}^*$. Is your *T* an isometry? As geometric figures, how are S and *T*(S) related?

Example 4. Consider the line in E^2 that has equation y = 2x relative to the standard coordinate system – that is relative to the standard basis for R^2 which is $S = \{e_1, e_2\}$. Suppose the basis vectors for a new

coordinate system *B* are
$$\mathbf{b_1} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}$$
 and $\mathbf{b_2} = \begin{bmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$

What will be the equation of the line relative to the *B*-coordinate system?

Let B = [**b**₁ **b**₂]. For any point with standard coordinates
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 we denote its *B*-coordinates by $\begin{bmatrix} x' \\ y' \end{bmatrix}$
We know that B $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$. So, $x = \frac{1}{\sqrt{5}}x' + \frac{-2}{\sqrt{5}}y'$ and $y = \frac{2}{\sqrt{5}}x' + \frac{1}{\sqrt{5}}y'$.

Substituting for x and y in the original equation we get

 $\left(\frac{2}{\sqrt{5}}x' + \frac{1}{\sqrt{5}}y'\right) = 2\left(\frac{1}{\sqrt{5}}x' + \frac{-2}{\sqrt{5}}y'\right)$. Solving for y' we obtain the equation for the line in the

B-coordinate system.

Example 5. The basis vectors for a coordinate system *C* are $\mathbf{c_1} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $\mathbf{c_2} = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$.

Consider the curve in E^2 that has equation $y' = (x')^2 + 1$ relative to the C-coordinate system. What will be the equation of the curve relative to the standard coordinate system?

Let $C = [c_1 \ c_2]$. For any point with standard coordinates $\begin{bmatrix} x \\ y \end{bmatrix}$ we denote its *C*-coordinates by $\begin{bmatrix} x' \\ y' \end{bmatrix}$. We know that $C \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$. Therefore $C^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$. Where $C^{-1} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$.

So, $x' = \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y$ and $y' = \frac{-1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y$. Substituting for x' and y' in the original equation we get $(\frac{-1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y) = (\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y)^2 + 1$. Expressing the equation in general quadratic form $ax^2 + bxy + cy^2 + dx + ey + f = 0$ we obtain the following:

We note the discriminant test from a calculus text that tells us that, except for a few degenerate cases an equation in the general quadratic form represents:

- a. a parabola if $b^2 4ac = 0$,
- b. an ellipse if $b^2 4ac < 0$, and
- c. a hyperbola if $b^2 4ac > 0$.

Given an equation of a curve in the form $ax^2 + bxy + cy^2 + dx + ey + f = 0$ relative to the standard coordinate system, it can be shown that the cross product (xy) term can be eliminated by transforming coordinates by rotating the coordinate axes through a counterclockwise rotation of α where tan $2\alpha = b/(a - c)$. Equivalently, we write the equation in terms of new coordinates with respect to the basis

$$B = \{ \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}, \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix} \}.$$