Affine Transformations \& Change of Coordinates

An affine transformation $T: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ has the form $T(\mathbf{v})=\mathrm{A} \mathbf{v}+\mathbf{b}$ where A is an $n x n$ matrix and $\mathbf{b} \in \mathrm{R}^{\mathrm{n}}$.

Example 1. Suppose for $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right], T(\mathbf{v})=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]+\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Suppose S is the square with vertices $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Sketch both S and the image of $\mathrm{S}, T(\mathrm{~S})$, under the transformation.

Explain why, in general, affine transformations are not linear transformations.
An isometry preserves distances. So, a transformation $T: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ will be an isometry provided $\|\mathbf{u}-\mathbf{v}\|=\|T(\mathbf{u})-T(\mathbf{v})\|$ for all $\mathbf{u}, \mathbf{v} \in \mathrm{R}^{\mathrm{n}}$.

Is the transformation of Example 1 an isometry?
Example 2. Suppose for $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right], T(\mathbf{v})=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]+\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Suppose S is the square with vertices $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Sketch both S and the image of $S, T(S)$, under the transformation.

Is the transformation of Example 2 an isometry?

Example 3. Let S be the triangle with vertices $\mathbf{A}=\left[\begin{array}{l}2 \\ 0\end{array}\right], \mathbf{B}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, and $\mathbf{C}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Find an affine transformation T such that $T(\mathbf{A})=\left[\begin{array}{l}6 \\ 2\end{array}\right]=\mathbf{A}^{\prime}, T(\mathbf{B})=\left[\begin{array}{l}5 \\ 0\end{array}\right]=\mathbf{B}^{\prime}$, and $T(\mathbf{C})=\left[\begin{array}{l}4 \\ 2\end{array}\right]=\mathbf{C}^{\prime}$.
Is your T an isometry? As geometric figures, how are S and $T(\mathrm{~S})$ related?

Example 4. Consider the line in E^{2} that has equation $\mathrm{y}=2 \mathrm{x}$ relative to the standard coordinate system that is relative to the standard basis for R^{2} which is $S=\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}\right\}$. Suppose the basis vectors for a new coordinate system B are $\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{c}\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}}\end{array}\right]$ and $\mathbf{b}_{\mathbf{2}}=\left[\begin{array}{c}\frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]$.
What will be the equation of the line relative to the B-coordinate system?
Let $\mathrm{B}=\left[\begin{array}{ll}\mathbf{b}_{\mathbf{1}} & \mathbf{b}_{\mathbf{2}}\end{array}\right]$. For any point with standard coordinates $\left[\begin{array}{l}x \\ y\end{array}\right]$ we denote its B-coordinates by $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$. We know that $\mathrm{B}\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$. So, $x=\frac{1}{\sqrt{5}} x^{\prime}+\frac{-2}{\sqrt{5}} y^{\prime}$ and $y=\frac{2}{\sqrt{5}} x^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}$.

Substituting for x and y in the original equation we get
$\left(\frac{2}{\sqrt{5}} x^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}\right)=2\left(\frac{1}{\sqrt{5}} x^{\prime}+\frac{-2}{\sqrt{5}} y^{\prime}\right)$. Solving for y^{\prime} we obtain the equation for the line in the B-coordinate system.

Example 5. The basis vectors for a coordinate system C are $\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ and $\mathbf{c}_{2}=\left[\begin{array}{c}\frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$.
Consider the curve in E^{2} that has equation $\mathrm{y}^{\prime}=\left(\mathrm{x}^{\prime}\right)^{2}+1$ relative to the C -coordinate system.
What will be the equation of the curve relative to the standard coordinate system?
Let $\mathbf{C}=\left[\begin{array}{ll}\mathbf{c}_{1} & \mathbf{c}_{2}\end{array}\right]$. For any point with standard coordinates $\left[\begin{array}{l}x \\ y\end{array}\right]$ we denote its C-coordinates by $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$.
We know that $\mathrm{C}\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$. Therefore $\mathrm{C}^{-1}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$. Where $\mathrm{C}^{-1}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$.
So, $x^{\prime}=\frac{1}{\sqrt{2}} x+\frac{1}{\sqrt{2}} y$ and $y^{\prime}=\frac{-1}{\sqrt{2}} x+\frac{1}{\sqrt{2}} y$. Substituting for x^{\prime} and y^{\prime} in the original equation we get $\left(\frac{-1}{\sqrt{2}} x+\frac{1}{\sqrt{2}} y\right)=\left(\frac{1}{\sqrt{2}} x+\frac{1}{\sqrt{2}} y\right)^{2}+1$. Expressing the equation in general quadratic form $a x^{2}+b x y+c y^{2}+d x+e y+f=0$ we obtain the following:

We note the discriminant test from a calculus text that tells us that, except for a few degenerate cases an equation in the general quadratic form represents:
a. a parabola if $\mathrm{b}^{2}-4 \mathrm{ac}=0$,
b. an ellipse if $\mathrm{b}^{2}-4 \mathrm{ac}<0$, and
c. a hyperbola if $\mathrm{b}^{2}-4 \mathrm{ac}>0$.

Given an equation of a curve in the form $a^{2}+b x y+$ $c y^{2}+d x+e y+f=0$ relative to the standard coordinate system, it can be shown that the cross product (xy) term can be eliminated by transforming coordinates by rotating the coordinate axes through a counterclockwise rotation of α where $\tan 2 \alpha=\mathrm{b} /(\mathrm{a}-\mathrm{c})$. Equivalently, we write the equation in terms of new coordinates with respect to the basis
$B=\left\{\left[\begin{array}{c}\cos \alpha \\ \sin \alpha\end{array}\right],\left[\begin{array}{c}-\sin \alpha \\ \cos \alpha\end{array}\right]\right\}$.

