Some Important Results in Chapter 1

Theorem 2. Existence and Uniqueness Theorem

A linear system is consistent iff the rightmost column of the augmented matrix is not a pivot column. The solution set for a consistent system is unique iff there are no free variables.

Theorem 3.

If A is an $m \times n$ matrix with columns $\mathbf{a_1}, \ldots, \mathbf{a_n}$, and if b is in R^m , the matrix equation $A\mathbf{x} = \mathbf{b}$ has the same solution set as the vector equation $\mathbf{x_1}\mathbf{a_1} + \mathbf{x_2}\mathbf{a_2} + \ldots + \mathbf{x_n}\mathbf{a_n}$ which has the same solution set as the linear system whose augmented matrix is $[\mathbf{a_1} \ \mathbf{a_2} \ \ldots \mathbf{a_n} \ \mathbf{b}]$.

Theorem 4.

Let A be an $m \times n$ matrix. The following statements are logically equivalent.

- a. For each b in R^m , the equation Ax = b has a solution.
- b. Each **b** in R^m is a linear combination of the columns of A.
- c. The columns of A span R^{m} .
- d. A has a pivot in every row.

Theorem 7. Characterization of Linearly Dependent Sets

An indexed set of vectors $S = \{v_1, ..., v_p\}$ of two or more vectors is linearly dependent iff at least one of the vectors in S is a linear combination of the others.

Theorem 8.

If a set contains more vectors then there are entries in each vector, then the set is linearly dependent.

Theorem 9.

If a set contains the zero vector, then the set is linearly dependent.

Theorem 10.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The there exists a unique m x n matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all x in \mathbb{R}^n . In fact A is the matrix whose j^{th} column is the vector $T(\mathbf{e}_i)$.

Theorem 11.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. T is 1-1 iff $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem 12. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A. Then:

- a. T maps R^n onto R^m iff the columns of A span R^m .
- b. T is 1-1 iff the columns of A are linearly independent.