The Invertible Matrix Theorem

Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- a. A is an invertible matrix.
- b. A is row equivalent to I_n.
- c. A has n pivot positions
- d. Ax = 0 has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is 1-1.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$.
- h. The columns of A span R^n .
- i. The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto R^n .
- j. There is an $n \times n$ matrix C such that $CA = I_n$.
- k. There is an $n \times n$ matrix D such that $AD = I_n$.
- 1. A^T is invertible.
- m. The columns of A form a basis of R^n .
- n. Col $A = R^n$
- o. Dim Col A = n
- p. Rank A = n
- q. Nul $A = \{0\}$
- r. Dim Nul A = 0
- s. Det $A \neq 0$