The Invertible Matrix Theorem

Let A be an $n \mathrm{x} n$ matrix. Then the following statements are equivalent.
a. A is an invertible matrix.
b. A is row equivalent to I_{n}.
c. A has n pivot positions
d. $\mathrm{Ax}=\mathbf{0}$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $\mathbf{x} \mapsto \mathrm{Ax}$ is 1-1.
g. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathrm{R}^{\mathrm{n}}$.
h. The columns of A span R^{n}.
i. The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto R^{n}.
j. There is an $n x n$ matrix C such that $C A=I_{n}$.
k. There is an $n x n$ matrix D such that $\mathrm{AD}=\mathrm{I}_{\mathrm{n}}$.

1. A^{T} is invertible.
m . The columns of A form a basis of R^{n}.
n. $\operatorname{Col} \mathrm{A}=R^{\mathrm{n}}$
o. $\operatorname{Dim} \operatorname{Col} \mathrm{A}=n$
p. $\quad \operatorname{Rank} \mathrm{A}=n$
q. $\operatorname{Nul} A=\{\mathbf{0}\}$
r. $\operatorname{Dim} \operatorname{Nul} A=0$
s. Det $A \neq 0$
