Linear Independence

Suppose $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$. Find $\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{3} such that $\mathrm{x}_{1} \mathbf{v}_{\mathbf{1}}+\mathrm{x}_{2} \mathbf{v}_{\mathbf{2}}+\mathrm{x}_{3} \mathbf{v}_{\mathbf{3}}=\mathbf{0}$. where $\mathbf{0}$ is the zero vector in $\mathbf{R}^{\mathbf{3}}$.

An indexed set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ in $\mathbf{R}^{\mathbf{n}}$ is said to be linearly independent iff the vector equation

$$
\mathrm{x}_{1} \mathbf{v}_{\mathbf{1}}+\mathrm{x}_{2} \mathbf{v}_{\mathbf{2}}+\mathrm{x}_{3} \mathbf{v}_{\mathbf{3}}+\ldots+\mathrm{x}_{\mathrm{n}} \mathbf{v}_{\mathbf{n}}=\mathbf{0}
$$

has only the trivial solution. Otherwise, the set of vectors is said to be linearly dependent.

Suppose $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}2 \\ 6 \\ 10\end{array}\right] . \quad$ Determine whether or not the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly independent.

Suppose $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 2 & 2 & 4\end{array}\right]$. Are the columns of A linearly independent?

Suppose $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}3 \\ 6\end{array}\right]$, and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}0 \\ 4\end{array}\right]$.

Is the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ linearly independent?

Is the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ linearly independent?

Is the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{3}}\right\}$ linearly independent?

Do the columns of $\left[\begin{array}{lll}2 & 4 & 6 \\ 2 & 5 & 8\end{array}\right]$ span R^{2} ? Are the columns of $\left[\begin{array}{lll}2 & 4 & 6 \\ 2 & 5 & 8\end{array}\right]$ linearly independent?

Are the columns of $\left[\begin{array}{lll}2 & 0 & 4 \\ 0 & 0 & 3\end{array}\right]$ linearly independent?

