
Matrices and Vectors 

 
An m x n matrix is a rectangular array of numbers with m rows and n columns.  

In the matrix below aij denotes the entry in the i
th
 row and j

th
 column. 
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Vectors in R
n 

 
 

If n is a positive integer, R
n
 is the set of all ordered n-tuples of real numbers.  

We will usually write the elements of R
n
 as n x 1 column matrices, such as 
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We call the elements of R
n
 vectors.  A vector whose entries are all zero is called 

the zero vector and is denoted by 0.   
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 ∈  R
n
  and c ∈  R. 

 

We say vectors u and v are equal iff ui = vi for all i = 1, 2, …, n.  In this case 

we write u = v. 

 

The scalar multiple of u by c, denoted by cu, is defined by 
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The sum of u and v, denoted by u + v, is defined by  u + v =  
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Suppose v1, v2, …, vp ∈  R
n
 and c1, c2, …, cp ∈ R, a vector  defined by 

 

 y = c1v1 + c2v2 + … + cpvp 

 
is called a linear combination of the vectors v1, v2, …, vp with weights 

c1, c2, …, cp. 

 

Geometric Interpretations  (See pp. 29-31.) 

 

Algebraic properties of vectors in R
n
.  (See p. 32.) 

 

Vector equations, linear systems, and augmented matrices. 

 

Suppose v1, v2, …, vp ∈  R
n
, then the set of all linear combinations of  

v1, v2, …, vp is called the subset of R
n
 spanned (or generated) by v1, v2, …, vp. 

we denote this subset by Span{v1, v2, …, vp}. 

 

Exercises: 
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 Find c1, c2, and c2 such that c1v1 + c2v2 + c3v3 = b. 

 Is b in Span{v1, v2, v3}? 
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 Find c1, c2, and c2 such that c1v1 + c2v2 + c3v3 = c. 

 



d. Is c in Span{v1, v2, v3}? 

 

e.   Give a geometric description of Span{v1, v2, v3}? 

 

f. How many vectors are in Span{v1, v2, v3}? 


