Matrices and Vectors

An $\boldsymbol{m} \boldsymbol{x} \boldsymbol{n}$ matrix is a rectangular array of numbers with m rows and n columns. In the matrix below a_{ij} denotes the entry in the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column.

$$
A_{m x n}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]=\left[a_{i j}\right]_{m \times n}
$$

Vectors in $\mathbf{R}^{\mathbf{n}}$

If n is a positive integer, $\mathbf{R}^{\mathbf{n}}$ is the set of all ordered n -tuples of real numbers. We will usually write the elements of R^{n} as $n \times 1$ column matrices, such as

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\cdot \\
\cdot \\
u_{n}
\end{array}\right]
$$

We call the elements of $\mathbf{R}^{\mathbf{n}}$ vectors. A vector whose entries are all zero is called the zero vector and is denoted by 0 .

Suppose

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\cdot \\
\cdot \\
u_{n}
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\cdot \\
\cdot \\
w_{n}
\end{array}\right] \in \mathbf{R}^{\mathbf{n}} \text { and } \mathbf{c} \in \mathbf{R} .
$$

We say vectors \mathbf{u} and \mathbf{v} are equal iff $u_{i}=v_{i}$ for all $i=1,2, \ldots, \mathrm{n}$. In this case we write $\mathbf{u}=\mathbf{v}$.

The scalar multiple of \mathbf{u} by c , denoted by cu, is defined by

$$
\mathbf{c} \mathbf{u}=\left[\begin{array}{c}
c u_{1} \\
c u_{2} \\
\cdot \\
\cdot \\
c u_{n}
\end{array}\right]
$$

The sum of \mathbf{u} and \mathbf{v}, denoted by $\mathbf{u}+\mathbf{v}$, is defined by $\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}u_{1}+v_{1} \\ u_{2}+v_{2} \\ \cdot \\ \cdot \\ u_{n}+v_{n}\end{array}\right]$.
Suppose $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}} \in \mathbf{R}^{\mathbf{n}}$ and $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{p}} \in \mathbf{R}$, a vector defined by

$$
\mathbf{y}=\mathrm{c}_{1} \mathbf{v}_{1}+\mathrm{c}_{2} \mathbf{v}_{2}+\ldots+\mathrm{c}_{\mathrm{p}} \mathbf{v}_{\mathbf{p}}
$$

is called a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{p}}$ with weights $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{p}}$.

Geometric Interpretations (See pp. 29-31.)

Algebraic properties of vectors in $\mathbf{R}^{\mathbf{n}}$. (See p. 32.)

Vector equations, linear systems, and augmented matrices.

Suppose $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}} \in \mathbf{R}^{\mathbf{n}}$, then the set of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ is called the subset of \boldsymbol{R}^{n} spanned (or generated) by $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$. we denote this subset by $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$.

Exercises:

$$
x_{1}+2 x_{2}+2 x_{3}=11
$$

a. Solve: $x_{3}=3$

$$
2 x_{1}+4 x_{2}+5 x_{3}=25
$$

b. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}11 \\ 3 \\ 25\end{array}\right]$.

Find $\mathrm{c}_{1}, \mathrm{c}_{2}$, and c_{2} such that $\mathrm{c}_{1} \mathbf{v}_{1}+\mathrm{c}_{2} \mathbf{v}_{2}+\mathrm{c}_{3} \mathbf{v}_{3}=\mathbf{b}$.
Is \mathbf{b} in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$?
c. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{c}11 \\ 3 \\ 28\end{array}\right]$.

Find $\mathrm{c}_{1}, \mathrm{c}_{2}$, and c_{2} such that $\mathrm{c}_{1} \mathbf{v}_{1}+\mathrm{c}_{2} \mathbf{v}_{2}+\mathrm{c}_{3} \mathbf{v}_{3}=\mathbf{c}$.
d. Is \mathbf{c} in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$?
e. Give a geometric description of $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$?
f. How many vectors are in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$?

