An *m x n matrix* is a rectangular array of numbers with m rows and n columns. In the matrix below a_{ij} denotes the entry in the ith row and jth column.

$$A_{mxn} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}_{mxn}$$

Vectors in **R**ⁿ

If n is a positive integer, \mathbf{R}^{n} is the set of all ordered n-tuples of real numbers. We will usually write the elements of \mathbf{R}^{n} as $n \ge 1$ column matrices, such as

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_n \end{bmatrix}$$

We call the elements of \mathbb{R}^n vectors. A vector whose entries are all zero is called the *zero vector* and is denoted by **0**.

Suppose

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_n \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ \vdots \\ v_n \end{bmatrix}, \ \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ \vdots \\ w_n \end{bmatrix} \in \mathbf{R}^n \text{ and } \mathbf{c} \in \mathbf{R}.$$

We say vectors **u** and **v** are *equal* iff $u_i = v_i$ for all i = 1, 2, ..., n. In this case we write $\mathbf{u} = \mathbf{v}$.

The *scalar multiple* of **u** by c, denoted by c**u**, is defined by

The *sum* of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is defined by $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ . \\ . \\ u_n + v_n \end{bmatrix}$.

Suppose $v_1, v_2, ..., v_p \in \mathbb{R}^n$ and $c_1, c_2, ..., c_p \in \mathbb{R}$, a vector defined by

$$\mathbf{y} = \mathbf{c}_1 \mathbf{v}_1 + \mathbf{c}_2 \mathbf{v}_2 + \ldots + \mathbf{c}_p \mathbf{v}_p$$

is called a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p$ with weights $c_1, c_2, ..., c_p$.

Geometric Interpretations (See pp. 29-31.)

Algebraic properties of vectors in Rⁿ. (See p. 32.)

Vector equations, linear systems, and augmented matrices.

Suppose $v_1, v_2, ..., v_p \in \mathbb{R}^n$, then the set of all linear combinations of $v_1, v_2, ..., v_p$ is called the *subset of* \mathbb{R}^n *spanned* (or *generated*) by $v_1, v_2, ..., v_p$. we denote this subset by Span{ $v_1, v_2, ..., v_p$ }.

Exercises:

$$x_1 + 2x_2 + 2x_3 = 11$$

Solve: $x_3 = 3$
 $2x_1 + 4x_2 + 5x_3 = 25$

b. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 11 \\ 3 \\ 25 \end{bmatrix}$.

Find c_1 , c_2 , and c_2 such that $c_1v_1 + c_2v_2 + c_3v_3 = \mathbf{b}$. Is **b** in Span{ v_1, v_2, v_3 }?

c. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 11 \\ 3 \\ 28 \end{bmatrix}$.

Find c_1 , c_2 , and c_2 such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{c}$.

- d. Is c in Span $\{v_1, v_2, v_3\}$?
- e. Give a geometric description of $\text{Span}\{v_1, v_2, v_3\}$?
- f. How many vectors are in Span{ v_1 , v_2 , v_3 }?