A basis for a subspace H of R^{n} is a linearly independent set in H that spans H .
If $\mathrm{A}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 2 \\ 0 & 2 & -4 & 4\end{array}\right]$ find a basis for Col A and also for Nul A .

Claim: The pivot columns of a matrix A form a basis for Col A.

The dimension of a nonzero subspace H , denoted by $\operatorname{dim} \mathrm{H}$, is the number of vectors in any basis for H . The dimension of the zero subspace $\{\mathbf{0}\}$ is defined to be zero.

Find $\operatorname{dim} \operatorname{Col} \mathrm{A}$ and also dim Nul A.
The rank of a matrix A, denoted by rank A, is $\operatorname{dim} \operatorname{Col} \mathrm{A}$.
Find rank A.

