Coordinate Vectors

Suppose $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{p}}\right\}$ is a basis for a subspace H. For each $\mathbf{x} \in H$, the coordinates of \boldsymbol{x} relative to B are the weights $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{p}}$ such that

$$
\mathbf{x}=\mathrm{c}_{1} \mathbf{b}_{1}+\mathrm{c}_{2} \mathbf{b}_{2}+\ldots+\mathrm{c}_{\mathrm{p}} \mathbf{b}_{\mathrm{p}}
$$

and the vector in R^{p}

$$
[\mathbf{x}]_{B}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{p}
\end{array}\right]
$$

Is called the coordinate vector of \boldsymbol{x} relative to B or the B-coordinate vector of \boldsymbol{x}.

Suppose A $=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 2 \\ 0 & 2 & -4 & 4\end{array}\right]$.
We have seen that a basis for $\operatorname{Col} \mathrm{A}$ is $B=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]\right\}$.
Is $\mathbf{x}=\left[\begin{array}{l}3 \\ 2 \\ 4\end{array}\right]$ in $\operatorname{Col} \mathrm{A}$? If so, find $[\mathbf{x}]_{B}$, the B-coordinate vector of \mathbf{x}.

