The Invertible Matrix Theorem

- 1. Classify each statement as true or false. In each case A refers to an arbitrary $n \times n$ matrix and **b** is $n \times 1$.
 - a. If Ax = 0, has only the trivial solution, then A is row equivalent to I_n .
 - b. If the columns of A span R^n , then the columns are linearly independent.
 - c. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbf{R}^n$.
 - d. If the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, then A has fewer than n pivot positions.
 - e. If A^T is not invertible, then A is not invertible.
 - f. If the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some $\mathbf{b} \in \mathbf{R}^n$, then $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions.
 - g. If the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ is 1-1.
 - h. The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto \mathbb{R}^n if there is an $n \times n$ matrix C such that CA = I.
- 2. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $T(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 7x_2)$. Show that *T* is invertible and find a formula for T^{-1} .

3. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear transformation, and let *S* at *U* be functions from \mathbb{R}^n into \mathbb{R}^n such that $S(T(\mathbf{x})) = \mathbf{x}$ and $U(T(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Show that $U(\mathbf{y}) = S(\mathbf{y})$ for all $\mathbf{y} \in \mathbb{R}^n$.

- 4. A *subspace* of Rⁿ is any set H in Rⁿ that has three properties:
 a. The zero vector is in H.

 - b. For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
 - c. For each **u** in H and each scalar c, the vector c**u** is in H.

Suppose K = {
$$\mathbf{v} \in \mathbb{R}^2$$
 : $\mathbf{v} = k \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ for some scalar k }. Is K a subspace of \mathbb{R}^2 ?

Suppose J = {
$$\mathbf{v} \in \mathbb{R}^2$$
: $\mathbf{v} = \begin{bmatrix} k \\ 4 \end{bmatrix}$ for some scalar k }. Is J a subspace of \mathbb{R}^2 ?