The Invertible Matrix Theorem

1. Classify each statement as true or false. In each case A refers to an arbitrary $n x n$ matrix and \mathbf{b} is $n \times 1$.
a. If $A \mathbf{x}=\mathbf{0}$, has only the trivial solution, then A is row equivalent to I_{n}.
b. If the columns of A span R^{n}, then the columns are linearly independent.
c. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathrm{R}^{\mathrm{n}}$.
d. If the equation $\mathrm{Ax}=\mathbf{0}$ has a nontrivial solution, then A has fewer than n pivot positions.
e. If A^{T} is not invertible, then A is not invertible.
f. If the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent for some $\mathbf{b} \in \mathrm{R}^{\mathrm{n}}$, then $\mathrm{Ax}=\mathbf{0}$ has nontrivial solutions.
g. If the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, then the transformation $\mathbf{x} \mapsto \mathrm{Ax}$ is 1-1.
h. The transformation $\mathbf{x} \mapsto \mathrm{A} \mathbf{x}$ is onto R^{n} if there is an $n x n$ matrix C such that $\mathrm{CA}=\mathrm{I}$.
2. Suppose $T: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ is defined by $T\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(-5 \mathrm{x}_{1}+9 \mathrm{x}_{2}, 4 \mathrm{x}_{1}-7 \mathrm{x}_{2}\right)$. Show that T is invertible and find a formula for T^{-1}.
3. Let $T: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ be an invertible linear transformation, and let S at U be functions from R^{n} into R^{n} such that $S(T(\mathbf{x}))=\mathbf{x}$ and $U(T(\mathbf{x}))=\mathbf{x}$ for all $\mathbf{x} \in \mathrm{R}^{\mathrm{n}}$. Show that $U(\mathbf{v})=S(\mathbf{v})$ for all $\mathbf{v} \in \mathrm{R}^{\mathrm{n}}$.
4. A subspace of R^{n} is any set H in R^{n} that has three properties:
a. The zero vector is in H .
b. For each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u}+\mathbf{v}$ is in H.
c. For each \mathbf{u} in H and each scalar c , the vector cu is in H .

Suppose $K=\left\{\mathbf{v} \in R^{2}: \mathbf{v}=k\left[\begin{array}{l}2 \\ 4\end{array}\right]\right.$ for some scalar $\left.k\right\}$. Is K a subspace of R^{2} ?

Suppose $J=\left\{\mathbf{v} \in R^{2}: \mathbf{v}=\left[\begin{array}{l}k \\ 4\end{array}\right]\right.$ for some scalar $\left.k\right\}$. Is J a subspace of R^{2} ?

