Almost all the transformations we will consider are, or can be, associated with matrix multiplication. Hence, we will refer to such transformations as *matrix transformations*. For a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, typically $T(\mathbf{x})$ will be computed as $A\mathbf{x}$ where A is an $m \times n$ matrix. (We frequently denote such a transformation by $\mathbf{x} \mapsto A\mathbf{x}$.)

Example:

Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$, and define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$, so that
 $T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ x_2 \end{bmatrix}$.

- a. Find *T*(**u**).
- b. If possible find $\mathbf{x} \in \mathbf{R}^2$ such that $T(\mathbf{x}) = \mathbf{b}$.
- c. Determine the range of *T*.
- d. If T acts on each point in the rectangle shown below, what do you think the set of images of those points will look like?

u	<i>T</i> (u)
$\begin{bmatrix} 0\\ 0\end{bmatrix}$	
$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	
$\begin{bmatrix} 2\\ 3 \end{bmatrix}$	
$\begin{bmatrix} 0\\ 3 \end{bmatrix}$	
$\begin{bmatrix} 1\\1 \end{bmatrix}$	

A transformation (function or mapping) is *linear* provided: (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T; (ii) $T(\mathbf{cu}) = cT(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c.

Our example is defined by $T(\mathbf{x}) = \mathbf{A}\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ x_2 \end{bmatrix}.$

e. Is the transformation *T* defined above a linear transformation?

Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and c be a scalar. Calculate $T(\mathbf{u})$, $T(\mathbf{v})$, $T(\mathbf{u} + \mathbf{v})$, $T(\mathbf{u}) + T(\mathbf{v})$, $T(\mathbf{cu})$ and $cT(\mathbf{v})$. Next compare $T(\mathbf{u} + \mathbf{v})$ and $T(\mathbf{u}) + T(\mathbf{v})$; then compare $T(\mathbf{cu})$ and $cT(\mathbf{v})$.

$$T(\mathbf{u}) = ; T(\mathbf{v}) = ; T(\mathbf{u}) + T(\mathbf{v}) =$$

 $T(\mathbf{u} + \mathbf{v}) =$

$$cT(\mathbf{u}) = ; T(c\mathbf{u}) =$$

f. Is the transformation $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $F(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} x_1 x_2 \\ x_3^2 \end{bmatrix}$ a linear transformation?