Almost all the transformations we will consider are, or can be, associated with matrix multiplication. Hence, we will refer to such transformations as matrix transformations. For a transformation $T: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$, typically $T(\mathbf{x})$ will be computed as $\mathrm{A} \mathbf{x}$ where A is an $m x n$ matrix. (We frequently denote such a transformation by $\mathbf{x} \mapsto \mathrm{A} \mathbf{x}$.)

Example:

Let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right], \mathbf{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right], \mathbf{b}=\left[\begin{array}{l}6 \\ 3\end{array}\right]$, and define a transformation $T: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ by $\mathrm{T}(\mathbf{x})=\mathrm{A} \mathbf{x}$, so that

$$
T(\mathrm{x})=\mathrm{A} \mathbf{x}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
x_{2}
\end{array}\right] .
$$

a. Find $T(\mathbf{u})$.
b. If possible find $\mathbf{x} \in \mathrm{R}^{2}$ such that $T(\mathrm{x})=\mathbf{b}$.
c. Determine the range of T.
d. If T acts on each point in the rectangle shown below, what do you think the set of images of those points will look like?

\mathbf{u}	$T(\mathbf{u})$
$\left[\begin{array}{l}0 \\ 0\end{array}\right]$	
$\left[\begin{array}{l}2 \\ 0\end{array}\right]$	
$\left[\begin{array}{l}2 \\ 3\end{array}\right]$	
$\left[\begin{array}{l}0 \\ 3\end{array}\right]$	
$\left[\begin{array}{l}1 \\ 1\end{array}\right]$	

A transformation (function or mapping) is linear provided:
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
(ii) $T(\mathbf{c u})=\mathrm{c} T(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c .

Our example is defined by $T(\mathrm{x})=\mathrm{A} \mathbf{x}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}+2 x_{2} \\ x_{2}\end{array}\right]$.
e. Is the transformation T defined above a linear transformation?

Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ and c be a scalar. Calculate $T(\mathbf{u}), T(\mathbf{v}), T(\mathbf{u}+\mathbf{v}), T(\mathbf{u})+T(\mathbf{v})$,
$T(\mathbf{c u})$ and $\mathrm{c} T(\mathbf{v})$. Next compare $T(\mathbf{u}+\mathbf{v})$ and $T(\mathbf{u})+T(\mathbf{v})$; then compare $T(\mathrm{cu})$ and $\mathrm{c} T(\mathbf{v})$.
$T(\mathbf{u})=\quad ; T(\mathbf{v})=\quad ; T(\mathbf{u})+T(\mathbf{v})=$
$T(\mathbf{u}+\mathbf{v})=$
$\mathrm{c} T(\mathbf{u})=\quad ; T(\mathrm{c} \mathbf{u})=$
f. Is the transformation $F: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ defined by $F\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} x_{2} \\ x_{3}^{2}\end{array}\right]$ a linear transformation?

