A transformation (function or mapping) is linear provided:
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
(ii) $T(\mathbf{c u})=\mathrm{c} T(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c .

Suppose $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is in R^{2}, and $T: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ is defined by $\mathrm{T}(\mathbf{x})=\mathrm{A} \mathbf{x}$, so that

$$
T(\mathrm{x})=\mathrm{A} \mathbf{x}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
x_{2}
\end{array}\right] .
$$

Is the transformation T defined above a linear transformation?
Suppose $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ are in R^{2} and c is a scalar.
(i) $T(\mathbf{u}+\mathbf{v})=T\left(\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2}\end{array}\right]\right)=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2}\end{array}\right]=\left[\begin{array}{c}1\left(u_{1}+v_{1}\right)+2\left(u_{2}+v_{2}\right) \\ 1\left(u_{2}+v_{2}\right)\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{c}
\left(1 u_{1}+2 u_{2}\right)+\left(1 v_{1}+2 v_{2}\right) \\
1 u_{2}+1 v_{2}
\end{array}\right]=\left[\begin{array}{c}
1 u_{1}+2 u_{2} \\
1 u_{2}
\end{array}\right]+\left[\begin{array}{c}
1 v_{1}+2 v_{2} \\
1 v_{2}
\end{array}\right]=T\left(\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right)+T\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right) \\
& =T(\mathbf{u})+T(\mathbf{v})
\end{aligned}
$$

Hence, $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
(ii) $\left.T(\mathbf{c u})=T\left(\begin{array}{l}c u_{1} \\ c u_{2}\end{array}\right]\right)=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}c u_{1} \\ c u_{2}\end{array}\right]=\left[\begin{array}{c}1 c u_{1}+2 c u_{2} \\ 1 c u_{2}\end{array}\right]=\mathrm{c}\left[\begin{array}{c}1 u_{1}+2 u_{2} \\ 1 u_{2}\end{array}\right]$

$$
=\mathrm{c} T(\mathbf{u})
$$

Hence, $T(\mathrm{cu})=\mathrm{c} T(\mathbf{u})$
Consequently, by (i) and (ii) T is a linear transformation.
Is the transformation $F: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ defined by $F\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} x_{2} \\ x_{3}^{2}\end{array}\right]$ a linear transformation?

Given $\mathrm{A}=\left[\begin{array}{lll}2 & 4 & 0 \\ 0 & 1 & 2\end{array}\right], \mathbf{u}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right], \mathbf{v}=\left[\begin{array}{c}0 \\ -2 \\ 3\end{array}\right], \mathbf{b}=\left[\begin{array}{c}10 \\ 4\end{array}\right]$, and $T: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ defined by $T(\mathbf{x})=\mathrm{A} \mathbf{x}$.
Perform the following calculations:
$T(\mathbf{u})=$
$T(\mathbf{v})=$
$T(\mathbf{u}+\mathbf{v})=$
$T(\mathbf{u})+T(\mathbf{v})=$
$T(3 \mathbf{u})=$
$T(4 \mathbf{v})=$
$4 T(\mathbf{v})=$
$T(3 \mathbf{u}+4 \mathbf{v})=$

Find all $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ such that $T(\mathbf{x})=\mathbf{b}$.

Is T onto R^{2} ? Is $T 1-1$?

