The Matrix of a Linear Transformation

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is defined as follows:

$$T(\mathbf{x}) = T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 2x_1 + 4x_2 + 6x_3 \\ x_2 + 3x_3 \end{bmatrix} \text{ for all } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3.$$

1. Calculate each of the following:

$$T(\begin{bmatrix} 1\\0\\0 \end{bmatrix}) = T(\begin{bmatrix} 0\\1\\0 \end{bmatrix}) = T(\begin{bmatrix} 0\\0\\1 \end{bmatrix}) = T(\begin{bmatrix}$$

- 2. Find a 2 x 3 matrix A such that T(x) = Ax for each $x \in \mathbb{R}^3$.
- 3. Show how to calculate $T(\begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix})$ three different ways.

The special
$$n \times n$$
 matrix $I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$ is called an *identity matrix* and its columns are all

vectors in \mathbb{R}^n and are denoted by \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_n respectively. So, \mathbf{e}_j is the column vector with \mathbf{j}^{th} entry 1 and all other entries zero.

Theorem 10. Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. There exists a unique $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$. A is the matrix whose \mathbf{j}^{th} column is the vector $T(\mathbf{e}_j)$. So, $A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)]$. A is called the *standard matrix for the linear transformation* T.

4. Find the standard matrix for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T(\mathbf{x}) = T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} -2x_2 \\ -2x_1 \end{bmatrix}.$$

5. Find and graph the image of the unit square under transformation of #4 above.

A transformation (mapping) $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if each $b \in \mathbb{R}^m$ is the image of at least one $x \in \mathbb{R}^n$.

6. Is the mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(\mathbf{x}_1) = T([x_1, x_2, x_3]) = [2x_1 + 4x_2 + 6x_3, x_2 + 3x_3]$ for all $\mathbf{x} = [x_1, x_2, x_3] \in \mathbb{R}^3$ onto \mathbb{R}^2 ?

A transformation (mapping) $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-one if each $b \in \mathbb{R}^m$ is the image of at most one $x \in \mathbb{R}^n$.

7. Is the mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = T([x_1, x_2, x_3]) = [2x_1 + 4x_2 + 6x_3, x_2 + 3x_3]$ for all $\mathbf{x} = [x_1, x_2, x_3] \in \mathbb{R}^3$ one-one?

- 8. Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is defined by $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for the $m \times n$ matrix A. What can we conclude about T if
 - a. the columns of \boldsymbol{A} span \boldsymbol{R}^m
 - b. the columns of A don't span R^m
 - c. the columns of A are linearly independent
 - d. the columns of A are dependent
 - e. Ax = 0 has only the trivial solution
 - f. Ax = 0 has many solutions
 - g. The matrix A has a pivot in each row
 - h. The matrix A has a pivot in each column
 - i. Ax = b is consistent for all $b \in \mathbb{R}^m$
 - j. Ax = b is inconsistent for some $b \in \mathbb{R}^m$
 - k. Ax = b is consistent and has a unique solution for all $b \in R^m$
 - 1. The linear system with augmented matrix [A:b] has free variables
 - m. The linear system with augmented matrix [A:b] has no free variables
 - n. The augmented matrix [A:b] has a pivot in each row
 - o. The augmented matrix [A:b] has a pivot in each column