The Concept of a Vector Space

An Abstract Mathematical Structure

A vector space is a nonempty set V of objects called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms listed below. The axioms must hold for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and for all scalars c and d.

1. The sum of \mathbf{u} and \mathbf{v}, denoted by $\mathbf{u}+\mathbf{v}$, is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in v such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. The scalar multiple of \mathbf{u} by c, denoted by $c \mathbf{u}$, is in V .
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8. $\quad(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
9. $c(d \mathbf{u})=(c d) \mathbf{u}$
10. $\quad 1 \mathbf{u}=\mathbf{u}$

Example 1: The space R^{3} is an example of a vector space. In fact, the space R^{n}, for any $\mathrm{n} \geq 1$, is also an example of a vector space.

Example 2: Let $P_{3}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}: a_{0}, a_{1}, a_{2}, a_{3} \in R\right\}$. P_{3} is the set of all polynomials of degree at most 3 . Of course these polynomials have the form

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

Where the coefficients $a_{0}, a_{1}, a_{2}, a_{3}$ are real numbers and the variable t can assume real values.

Example 3. Let V be the set of real valued functions defined on some interval D on the real line. Functions are added in the usual way: $\mathbf{f}+\mathbf{g}$ is the function whose value at $t \in D$ is $\mathbf{f}(\mathrm{t})+\mathbf{g}(\mathrm{t})$. Also, for a scalar c and \mathbf{f}, cf is the function whose value at t is $\mathrm{cf}(\mathrm{t})$. If $\mathrm{D}=\mathrm{R}$ and $\mathbf{f}(\mathrm{t})=\cos (\mathrm{t})+3$ and $\mathbf{g}(\mathrm{t})=4 \mathrm{t}^{2}+5 \mathrm{t}+6$, then

$$
(\mathbf{f}+\mathbf{g})(\mathrm{t})=\quad \text { and }(5 \mathbf{g})(\mathrm{t})=
$$

Two functions are equal iff their values are equal for each $t \in D$.

Exercise 1: Describe at least two subspaces of each of the vector spaces in the examples above.

Exercise 2: Suppose $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are the following vectors in P_{3} as defined in Example 2.

$$
\mathbf{v}_{\mathbf{1}}(\mathrm{t})=2 \quad \text { and } \quad \mathbf{v}_{\mathbf{2}}(\mathrm{t})=\mathrm{t}^{2}
$$

Let $\mathrm{H}=\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$. Show that H is a subspace of P_{3}.

Recall the definition of a linear transformation.

A transformation (function or mapping) is linear provided:
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
(ii) $T(\mathbf{c u})=\mathrm{c} T(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c .

Exercise 3. Consider the mapping D: $\mathrm{P}_{3} \rightarrow \mathrm{P}_{3}$ defined by $\mathrm{D}(\mathbf{f})=\frac{d f}{d t}$. Is D a linear transformation?

The kernel (or null space) of a linear transformation T is the set of all \mathbf{v} in the domain of T such that $\mathrm{T}(\mathbf{v})=\mathbf{0}$ (the zero vector in the codomain of T).

Exercise 4. Identify the kernel of the transformation D of Exercise 3.

