The Concept of a Vector Space An Abstract Mathematical Structure

A *vector space* is a nonempty set V of objects called *vectors*, on which are defined two operations, called *addition* and *multiplication by scalars* (real numbers), subject to the ten axioms listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars *c* and *d*.

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (u + v) + w = u + (v + w)
- 4. There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in v such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u** = **u**

Example1 : The space \mathbb{R}^3 is an example of a vector space. In fact, the space \mathbb{R}^n , for any $n \ge 1$, is also an example of a vector space.

Example 2: Let $P_3 = \{a_0 + a_1t + a_2t^2 + a_3t^3: a_0, a_1, a_2, a_3 \in R\}$. P₃ is the set of all polynomials of degree at most 3. Of course these polynomials have the form

 $\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$

Where the coefficients a₀, a₁, a₂, a₃ are real numbers and the variable t can assume real values.

Example 3. Let V be the set of real valued functions defined on some interval D on the real line. Functions are added in the usual way: $\mathbf{f} + \mathbf{g}$ is the function whose value at $t \in D$ is $\mathbf{f}(t) + \mathbf{g}(t)$. Also, for a scalar c and \mathbf{f} , c \mathbf{f} is the function whose value at t is c $\mathbf{f}(t)$. If D = R and $\mathbf{f}(t) = \cos(t) + 3$ and $\mathbf{g}(t) = 4t^2 + 5t + 6$, then

(f + g)(t) = and (5g)(t) =

Two functions are equal iff their values are equal for each $t \in D$.

Exercise 1: Describe at least two subspaces of each of the vector spaces in the examples above.

Exercise 2: Suppose v_1 and v_2 are the following vectors in P_3 as defined in Example 2.

 $v_1(t) = 2$ and $v_2(t) = t^2$

Let $H = \text{Span} \{ v_1, v_2 \}$. Show that H is a subspace of P_3 .

Recall the definition of a linear transformation.

A transformation (function or mapping) is *linear* provided: (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T; (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c.

Exercise 3. Consider the mapping D: P₃ \rightarrow P₃ defined by D(**f**) = $\frac{df}{dt}$. Is D a linear transformation?

The **kernel** (or **null space**) of a linear transformation T is the set of all **v** in the domain of T such that $T(\mathbf{v}) = \mathbf{0}$ (the zero vector in the codomain of T).

Exercise 4. Identify the kernel of the transformation D of Exercise 3.