
Linear Algebra In-Class Exercises 

 

Suppose v1, v2, …, vp ∈  R
n
 and c1, c2, …, cp ∈ R, a vector  defined by 

 

 y = c1v1 + c2v2 + … + cpvp 

 
is called a linear combination of the vectors v1, v2, …, vp with weights c1, c2, …, cp. 

 
Suppose v1, v2, …, vp ∈  R

n
, then the set of all linear combinations of  

v1, v2, …, vp is called the subset of R
n
 spanned (or generated) by v1, v2, …, vp. 

We denote this subset by Span{v1, v2, …, vp}. 

 

Exercises: 
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 Find c1, c2, and c2 such that c1v1 + c2v2 + c3v3 = b. 

 Can b be written as a linear combination of v1, v2, and v3 ? 

 Is b in Span{v1, v2, v3}? 
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c. Let v1 = 
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 Find c1, c2, and c2 such that c1v1 + c2v2 + c3v3 = c. 

 

d. Is c in Span{v1, v2, v3}? 

 

e.   Give a geometric description of Span{v1, v2, v3}? 

 

f. How many vectors are in Span{v1, v2, v3}? 

 

g. Prove:  For all vectors u, v ∈ R
n
 and scalars c, c(u + v) = cu + cv. 

 

 
 


