Suppose $v_1, v_2, ..., v_p \in \mathbb{R}^n$ and $c_1, c_2, ..., c_p \in \mathbb{R}$, a vector defined by

$$\mathbf{y} = \mathbf{c}_1 \mathbf{v}_1 + \mathbf{c}_2 \mathbf{v}_2 + \ldots + \mathbf{c}_p \mathbf{v}_p$$

is called a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p$ with weights $c_1, c_2, ..., c_p$.

Suppose $v_1, v_2, ..., v_p \in \mathbb{R}^n$, then the set of all linear combinations of $v_1, v_2, ..., v_p$ is called the *subset of* \mathbb{R}^n *spanned* (or *generated*) by $v_1, v_2, ..., v_p$. We denote this subset by Span{ $v_1, v_2, ..., v_p$ }.

Exercises:

a. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 11 \\ 3 \\ 25 \end{bmatrix}$.

Find c_1 , c_2 , and c_2 such that $c_1v_1 + c_2v_2 + c_3v_3 = \mathbf{b}$. Can **b** be written as a linear combination of v_1 , v_2 , and v_3 ? Is **b** in Span{ v_1 , v_2 , v_3 }?

$$x_1 + 2x_2 + 2x_3 = 11$$

b. Solve:
$$x_3 = 3$$

 $2x_1 + 4x_2 + 5x_3 = 25$

c. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 11 \\ 3 \\ 28 \end{bmatrix}$.

Find c_1 , c_2 , and c_2 such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{c}$.

- d. Is c in Span $\{v_1, v_2, v_3\}$?
- e. Give a geometric description of $\text{Span}\{v_1, v_2, v_3\}$?
- f. How many vectors are in Span{ v_1 , v_2 , v_3 }?
- g. Prove: For all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and scalars $c, c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.