Suppose $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}} \in \mathbf{R}^{\mathbf{n}}$ and $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{p}} \in \mathbf{R}$, a vector defined by

$$
\mathbf{y}=\mathrm{c}_{1} \mathbf{v}_{1}+\mathrm{c}_{2} \mathbf{v}_{2}+\ldots+\mathrm{c}_{\mathrm{p}} \mathbf{v}_{\mathbf{p}}
$$

is called a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{p}}$ with weights $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{p}}$.
Suppose $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}} \in \mathbf{R}^{\mathbf{n}}$, then the set of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{p}}$ is called the subset of \boldsymbol{R}^{n} spanned (or generated) by $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathrm{p}}$. We denote this subset by $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$.

Exercises:

a. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}11 \\ 3 \\ 25\end{array}\right]$.

Find c_{1}, c_{2}, and c_{2} such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{b}$.
Can \mathbf{b} be written as a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, and $\mathbf{v}_{\mathbf{3}}$?
Is \mathbf{b} in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$?

$$
x_{1}+2 x_{2}+2 x_{3}=11
$$

b. Solve: $x_{3}=3$

$$
2 x_{1}+4 x_{2}+5 x_{3}=25
$$

c. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{c}11 \\ 3 \\ 28\end{array}\right]$.

Find $\mathrm{c}_{1}, \mathrm{c}_{2}$, and c_{2} such that $\mathrm{c}_{1} \mathbf{v}_{1}+\mathrm{c}_{2} \mathbf{v}_{2}+\mathrm{c}_{3} \mathbf{v}_{3}=\mathbf{c}$.
d. Is \mathbf{c} in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$?
e. Give a geometric description of $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$?
f. How many vectors are in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$?
g. Prove: For all vectors $\mathbf{u}, \mathbf{v} \in R^{\mathrm{n}}$ and scalars $c, c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.

