Special Matrices and Matrix Operations

If A is an $m x n$ matrix, the entry in the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of A is denoted by $\mathrm{a}_{i j}$ and is called the (i, j)-entry of A.

The columns of A are vectors in R^{m} and are denoted by $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}$.
We sometimes write $\mathrm{A}=\left[\begin{array}{llll}\mathbf{a}_{\mathbf{1}} & \mathbf{a}_{\mathbf{2}} & \ldots & \mathbf{a}_{\mathbf{n}}\end{array}\right]$.
The diagonal entries in an $m x n$ matrix $A=\left[a_{i j}\right]$ are $\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \ldots$ and they form the main diagonal of A. A diagonal matrix is a square matrix whose nondiagonal entries are all zero. An $m x n$ matrix whose entries are all zero is a zero matrix.
$K=\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 5\end{array}\right]$

$$
\mathbf{J}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Two matrices A and B are equal iff they are of the same size and their corresponding entries are equal.

If A and B are both $m x n$ matrices, then the $\operatorname{sum} \mathrm{A}+\mathrm{B}$ is the $m x n$ matrix C whose (i, j)-entry is defined by $c_{i j}=a_{i j}+b_{i j}$.

Suppose $A=\left[\begin{array}{ccc}3 & 0 & 2 \\ -1 & 2 & 3\end{array}\right], \quad B=\left[\begin{array}{ccc}-2 & 1 & 5 \\ 0 & 3 & 4\end{array}\right], \quad \mathrm{C}=\left[\begin{array}{cc}3 & 0 \\ -2 & 1\end{array}\right]$
$A+B$
A +C

If A is an $m x n$ matrix and r is a scalar, then the scalar multiple rA is the $m x n$ matrix whose (i, j)-entry is $\mathrm{ra}_{\mathrm{ij}}$. We define -A to mean $(-1) \mathrm{A}$, and we write $\mathrm{A}-\mathrm{B}$ in place of $\mathrm{A}+(-1) \mathrm{B}$.

Suppose A and B are defined as above.
$(-2) \mathrm{B}=$

$$
A-2 B=
$$

We have already defined matrix multiplication. Supposing that A, B, C, and I are defined as above try to calculate each of the following:

CB
BC
BI

