Special Matrices and Matrix Operations

If A is an *m* x *n* matrix, the entry in the ith row and jth column of A is denoted by a_{ij} and is called the (i,j)-entry of A.

The columns of A are vectors in \mathbb{R}^m and are denoted by $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$.

We sometimes write $A = [a_1 \ a_2 \ \dots \ a_n].$

The *diagonal entries* in an $m \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, a_{33}, ...$ and they form the *main diagonal* of A. A *diagonal matrix* is a square matrix whose nondiagonal entries are all zero. An $m \times n$ matrix whose entries are all zero is a *zero matrix*.

Two matrices A and B are equal iff they are of the same size and their corresponding entries are equal.

If A and B are both m x n matrices, then the sum A + B is the m x n matrix C whose (i,j)-entry is defined by $c_{ij} = a_{ij} + b_{ij}$.

Suppose A =
$$\begin{bmatrix} 3 & 0 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$
, B = $\begin{bmatrix} -2 & 1 & 5 \\ 0 & 3 & 4 \end{bmatrix}$, C = $\begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix}$
A + B A + C

If A is an m x n matrix and r is a scalar, then the scalar multiple rA is the m x n matrix whose (i,j)-entry is ra_{ij}. We define –A to mean (-1)A, and we write A – B in place of A + (-1)B.

Suppose A and B are defined as above.

$$(-2)B = A - 2B =$$

We have already defined matrix multiplication. Supposing that A, B, C, and I are defined as above try to calculate each of the following:

CB BC BI