A set of m linear equations in n variables is called a system of linear equations or a linear system.

$$
\begin{aligned}
& \mathbf{a}_{11} \mathbf{x}_{1}+\mathbf{a}_{12} \mathbf{x}_{2}+\ldots+\mathbf{a}_{1 \mathbf{n}} \mathbf{x}_{n}=b_{1} \\
& \mathbf{a}_{21} \mathbf{x}_{1}+\mathbf{a}_{22} \mathbf{x}_{2}+\ldots+\mathbf{a}_{2 n} \mathbf{x}_{n}=b_{2} \\
& : \\
& \mathbf{a}_{m 1} \mathbf{x}_{1}+\mathbf{a}_{m 2} \mathbf{x}_{2}+\ldots+\mathbf{a}_{m n} \mathbf{x}_{n}=b_{m}
\end{aligned}
$$

In the linear system above each $\mathbf{a}_{\mathbf{i j}}$ and $\mathbf{b}_{\mathbf{i}}$ will be numbers and each \mathbf{x}_{j} will be a variable. ($1 \leq \mathrm{i} \leq \mathrm{m} ; \mathbf{1} \leq \mathrm{j} \leq \mathrm{n})$

A solution for a linear system is an ordered n-tuple ($s_{1}, s_{2}, \ldots, s_{n}$) of numbers that makes each equation in the system true when the values $s_{1}, s_{2}, \ldots, s_{n}$ are substituted for $x_{1}, x_{2}, \ldots, x_{n}$ respectively.

The set of all possible solutions for a linear system is called the solution set for the system. Two linear systems are called equivalent if they have the same solutions set.

We solve linear systems by a systemetic procedure that allows us to replace one system with an equivalent system that is easier to solve. The following three actions produce equivalent linear systems:

Replacement - Replace one equation by the sum of itself and a multiple of another equation $\left(k E_{j}+E_{i} \rightarrow E_{i}\right)$

Interchange - Interchange two rows $\left(\mathbf{E}_{\mathbf{j}} \leftrightarrow \mathbf{E}_{\mathbf{i}}\right)$
Scaling - Multiply all entries in a row by a nonzero constant $\left(\mathbf{k E}_{\mathbf{i}} \rightarrow \mathbf{E}_{\mathbf{i}}\right)$

