\qquad
I. Definitions. (Three points each) Write definitions of the following terms. Be sure to use complete sentences in each case.

1. Define: linearly independent
2. Define: linear transformation
3. Define: subspace of R^{n}
4. Define: basis of a subspace of R^{n}
II. Computations. (Two points each) Given the matrices defined below, perform the indicated computations if possible. If a particular computation cannot be performed, say so and explain why it cannot be performed.

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 3 & 2
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
4 & 2 \\
0 & 3
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
-1 & 5 \\
- & 2 & 4
\end{array}\right]
$$

5. $\mathbf{A B}$
6. $\quad \mathbf{B}^{\mathrm{T}}+\mathbf{C}$
7. BA
8. 5 C
III. Exercises (Five points each)
9. Consider $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3}, 2 \mathrm{x}_{2}+6 \mathrm{x}_{3}\right)$
a. Specify the standard matrix for T.
b. Is T onto \mathbf{R}^{2} ? Justify your answer.
c. Is T one-to-one? Justify your answer.
10. Show, step-by-step, how to employ the row reduction algorithm to find the inverse of the matrix below.

$$
\left[\begin{array}{lll}
2 & 0 & 4 \\
4 & 1 & 8 \\
0 & 2 & 1
\end{array}\right]
$$

11. Suppose the matrix \mathbf{A} is defined as follows.
$\mathbf{A}=\left[\begin{array}{lll}2 & 0 & 4 \\ 0 & 1 & 3 \\ 0 & 2 & 6\end{array}\right]$
a. Is $\mathbf{x}=\left[\begin{array}{c}10 \\ 4 \\ 8\end{array}\right]$ in the column space of A? Justify your answer.
c. Specify a basis for the column space of \mathbf{A}.
d. What is the dimension of $\operatorname{Col} \mathrm{A}$?
e. Characterize the vectors in the null space of \mathbf{A} in parametric vector form.
f. Specify a basis for $\operatorname{Nul} \mathbf{A}$.
12. Consider the set $\mathrm{H}=\left\{\bar{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: x_{1}-2 x_{2}=1\right\}$.
a. Sketch the graph of H in 2-space.
b. Name two vectors in H .
c. Is H a subspace of \mathbf{R}^{2} ? Justify your answer.
13. The standard basis for R^{2} is $E=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ and $B=\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 4\end{array}\right]\right\}$ is another basis for R^{2}.

If the standard coordinates for $\mathbf{x} \in \mathrm{R}^{2}$ are $\left[\begin{array}{c}6 \\ 20\end{array}\right]$, then determine $[\mathbf{x}]_{B}$.

