- 12. p = 3 and q = 4. Nul A is a subspace of \mathbb{R}^3 because solutions of Ax = 0 must have 3 entries, to match the columns of A. Col A is a subspace of \mathbb{R}^4 because each column vector has 4 entries.
- \checkmark 14. To produce a vector in Col A, select any column of A. For Nul A, solve the equation Ax = 0:

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 7 & 0 \\ -5 & -1 & 0 & 0 \\ 2 & 7 & 11 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -3 & -5 & 0 \\ 0 & 9 & 15 & 0 \\ 0 & 3 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 5/3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1/3 & 0 \\ 0 & 1 & 5/3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution is $x_1 = (1/3)x_3$ and $x_2 = (-5/3)x_3$, with x_3 free. The general solution in parametric vector form is not needed. All that is required here is one nonzero vector. So choose any values of x_3 and x_4 (not both zero). For instance, set $x_3 = 3$ to obtain the vector (1, -5, 3) in Nul A.

- √16. No. One vector is a multiple of the other, so they are linearly dependent and hence cannot be a basis for any subspace.
 - 17. No. Place the three vectors into a 3×3 matrix A and determine whether A is invertible:

$$A = \begin{bmatrix} 0 & 5 & 6 \\ 1 & -7 & 3 \\ -2 & 4 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -7 & 3 \\ 0 & 5 & 6 \\ -2 & 4 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -7 & 3 \\ 0 & 5 & 6 \\ 0 & -10 & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & -7 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 23 \end{bmatrix}$$

The matrix A has three pivots, so A is invertible by the IMT and its columns form a basis for \mathbb{R}^3 (as pointed out in Example 5).

 $\sqrt{18}$. Yes. Place the three vectors into a 3×3 matrix A and determine whether A is invertible:

$$A = \begin{bmatrix} 1 & -5 & 7 \\ 1 & -1 & 0 \\ -2 & 2 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -5 & 7 \\ 0 & 4 & -7 \\ 0 & -8 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & -5 & 7 \\ 0 & 4 & -7 \\ 0 & 0 & -5 \end{bmatrix}$$

The matrix A has three pivots, so A is invertible by the IMT and its columns form a basis for \mathbb{R}^3 (as pointed out in Example 5).

- 20. No. The vectors are linearly dependent because there are more vectors in the set than entries in each vector. (Theorem 8 in Section 1.7.) So the vectors cannot be a basis for any subspace.
 - 21. a. False. See the definition at the beginning of the section. The critical phrases "for each" are missing.
 - b. True. See the paragraph before Example 4.
 - c. False. See Theorem 12. The null space is a subspace of \mathbb{R}^n , not \mathbb{R}^m .
 - d. True. See Example 5.
 - e. True. See the first part of the solution of Example 8.
- $\sqrt{22}$. a. False. See the definition at the beginning of the section. The condition about the zero vector is only one of the conditions for a subspace.
 - **b**. True. See Example 3.
 - c. True. See Theorem 12.
 - d. False. See the paragraph after Example 4.
 - e. False. See the Warning that follows Theorem 13.

24. For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0:

$$\begin{bmatrix} 1 & 0 & -4 & 7 & 0 \\ 0 & 1 & 5 & -6 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
. This corresponds to:
$$(x_1) - 4x_3 + 7x_4 = 0$$
$$(x_2) + 5x_3 - 6x_4 = 0$$
$$0 = 0$$

Solve for the basic variables and write the solution of Ax = 0 in parametric vector form:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4x_3 - 7x_4 \\ -5x_3 + 6x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 4 \\ -5 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -7 \\ 6 \\ 0 \\ 1 \end{bmatrix}. \text{ Basis for Nul } A: \begin{bmatrix} 4 \\ -5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -7 \\ 6 \\ 0 \\ 1 \end{bmatrix}$$

Notes: (1) A basis is a *set* of vectors. For simplicity, the answers here and in the text list the vectors without enclosing the list inside set brackets. This style is also easier for students. I am careful, however, to distinguish between a matrix and the set or list whose elements are the columns of the matrix.

(2) Recall from Chapter 1 that students are encouraged to use the augmented matrix when solving Ax = 0, to avoid the common error of misinterpreting the reduced echelon form of A as itself the augmented matrix for a nonhomogeneous system.

(3) Because the concept of a basis is just being introduced, I insist that my students write the parametric vector form of the solution of Ax = 0. They see how the basis vectors span the solution space and are obviously linearly independent. A shortcut, which some instructors might introduce later in the course, is only to solve for the basic variables and to produce each basis vector one at a time. Namely, set all free variables equal to zero except for one free variable, and set that variable equal to a suitable nonzero number.

28. The easiest construction is to write a 3×3 matrix in echelon form that has only 2 pivots, and let b be any vector in R³ whose third entry is nonzero.

29. (Solution in *Study Guide*) A simple construction is to write any nonzero 3×3 matrix whose columns are obviously linearly dependent, and then make **b** a vector of weights from a linear dependence relation among the columns. For instance, if the first two columns of A are equal, then **b** could be (1, -1, 0).

30. Since Col A is the set of all linear combinations of a_1, \ldots, a_p , the set $\{a_1, \ldots, a_p\}$ spans Col A. Because $\{a_1, \ldots, a_p\}$ is also linearly independent, it is a basis for Col A. (There is no need to discuss pivot columns and Theorem 13, though a proof could be given using this information.)

Section 2.9

2. If $[x]_B = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$, then x is formed from b_1 and b_2 using weights -1 and 3:

$$\mathbf{x} = (-1)\mathbf{b}_1 + 3\mathbf{b}_2 = (-1)\begin{bmatrix} -2\\1 \end{bmatrix} + 3\begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 11\\2 \end{bmatrix}$$

4. As in Exercise 3,
$$[\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{x}] = \begin{bmatrix} 1 & -3 & -7 \\ -3 & 5 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -7 \\ 0 & -4 & -16 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 4 \end{bmatrix}$$
, and $[\mathbf{x}]_B = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$.

8. Fig. 2 suggests that
$$\mathbf{x} = 2\mathbf{b}_1 - \mathbf{b}_2$$
, $\mathbf{y} = 1.5\mathbf{b}_1 + \mathbf{b}_2$, and $\mathbf{z} = -\mathbf{b}_1 - .5\mathbf{b}_2$. If so, then $[\mathbf{x}]_B = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $[\mathbf{y}]_B = \begin{bmatrix} 1.5 \\ 1.0 \end{bmatrix}$, and $[\mathbf{z}]_B = \begin{bmatrix} -1 \\ -.5 \end{bmatrix}$. To confirm $[\mathbf{y}]_B$ and $[\mathbf{z}]_B$, compute
$$1.5\mathbf{b}_1 + \mathbf{b}_2 = 1.5 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \mathbf{y} \text{ and } -\mathbf{b}_1 - .5\mathbf{b}_2 = -1 \begin{bmatrix} 0 \\ 2 \end{bmatrix} - .5 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -2.5 \end{bmatrix} = \mathbf{z}$$
.

10. The information
$$A = \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 1 & -1 & 6 & 5 & -3 \\ -2 & 0 & -6 & 1 & -2 \\ 4 & 1 & 9 & 1 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 shows that columns 1, 2,

and 4 of A form a basis for Col A: $\begin{bmatrix} 1\\1\\-2\\4 \end{bmatrix}, \begin{bmatrix} -2\\-1\\0\\1 \end{bmatrix}, \begin{bmatrix} 5\\5\\1\\1 \end{bmatrix}$. For Nul A,

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 3 & 0 & 0 & 0 \\ 0 & \boxed{1} & -3 & 0 & -7 & 0 \\ 0 & 0 & 0 & \boxed{1} & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} . \qquad \begin{matrix} \boxed{x_1} & +3x_3 & = 0 \\ \boxed{x_2} -3x_3 & -7x_5 = 0 \\ \boxed{x_4} -2x_5 = 0 \\ x_3 \text{ and } x_5 \text{ are free variables} \end{matrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -3x_3 \\ 3x_3 + 7x_5 \\ x_3 \\ 2x_5 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -3 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 7 \\ 0 \\ 2 \\ 1 \end{bmatrix}. \text{ Basis for Nul } A: \begin{bmatrix} -3 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 7 \\ 0 \\ 2 \\ 1 \end{bmatrix}.$$

From this, dim Col A = 3 and dim Nul A = 2.

/ 14. The five vectors span the column space H of a matrix that can be reduced to echelon form:

Columns 1 and 2 of the original matrix form a basis for H, so dim H = 2.

 $\sqrt{20}$. A 4×5 matrix A has 5 columns. By the Rank Theorem, rank $A = 5 - \dim \text{Nul } A$. Since the null space is three-dimensional, rank A = 2.