Solving Linear Systems

Given a linear system:
$1 x_{1}+2 x_{2}+3 x_{3}=10$
$1 x_{1}+4 x_{2}+5 x_{3}=16$
$2 x_{1}+6 x_{2}+8 x_{3}=26$
Form the augmented matrix for the system:

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 10 \\
1 & 4 & 5 & 16 \\
2 & 6 & 8 & 26
\end{array}\right]
$$

Apply elementary row operations to reduce the augmented matrix to row reduced echelon form:

Replace a row by the sum of itself and a multiple of another row. $\quad\left(\mathbf{k} \mathbf{R}_{\mathbf{i}}+\mathbf{R}_{\mathbf{j}} \rightarrow \mathbf{R}_{\mathbf{j}}\right)$
Interchange two rows. $\left(\mathbf{R}_{\mathbf{i}} \leftrightarrow \mathbf{R}_{\mathbf{j}}\right)$
Scale a row by multiplying its entries by a nonzero constant. ($\mathbf{k} \mathbf{R}_{\mathbf{i}} \rightarrow \mathbf{R}_{\mathbf{i}}$)

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 4 \\
0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Return to equation notation:

$$
\begin{array}{r}
x_{1}+x_{3}=4 \\
x_{2}+x_{3}=3
\end{array}
$$

Interpret and state conclusion:
The general solution of the system is
$\mathrm{x}_{1}=4-\mathrm{x}_{3}$
$\mathrm{x}_{2}=3-\mathrm{x}_{3}$
x_{3} is free
That is, the set of solutions for the system consists of all 3-tuples of the form (4-t, 3-t,t) where t is any real number.

