Solving Linear Systems

Given a linear system:

 $1x_1 + 2x_2 + 3x_3 = 10$ $1x_1 + 4x_2 + 5x_3 = 16$ $2x_1 + 6x_2 + 8x_3 = 26$

Form the augmented matrix for the system:

 $\begin{bmatrix} 1 & 2 & 3 & 10 \\ 1 & 4 & 5 & 16 \\ 2 & 6 & 8 & 26 \end{bmatrix}$

Apply elementary row operations to reduce the augmented matrix to row reduced echelon form:

Replace a row by the sum of itself and a multiple of another row. $(kR_i + R_i \rightarrow R_i)$ *Interchange* two rows. $(\mathbf{R}_i \leftrightarrow \mathbf{R}_i)$

Scale a row by multiplying its entries by a nonzero constant. $(kR_i \rightarrow R_i)$

1	0	1	4
0	1	1	3 0
0	0	0	0

Return to equation notation:

 $+ x_3 = 4$ X₁ $x_2 + x_3 = 3$

Interpret and state conclusion:

The general solution of the system is

 $x_1 = 4 - x_3$ $x_2 = 3 - x_3$ x₃ is free

That is, the set of solutions for the system consists of all 3-tuples of the form (4 - t, 3 - t, t)where t is any real number.