\qquad

1. (5 points) Complete the definition of a vector space.

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms listed below. The axioms below must hold for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and for all scalars c and d.
2. (5 points) Write a complete definition of the term "subspace of a vector space."
3. (5 points) State the Basis Theorem.
4. (5 points) Consider P_{4} the vector space of polynomials of degree 4 or less. Is
$H=\left\{\mathbf{p}: \mathbf{p}(t)=a_{0}+a_{1} t+a_{3} t^{3}\right.$ for some $\left.a_{0}, a_{1}, a_{3} \in R\right\}$ a subspace of P_{4} ? Carefully express your answer using a complete sentence, and then carefully justify your answer.
5. (5 points) Consider the matrix A defined below. Show how to use row reduction to help you determine both a basis for the column space of A and a basis for the null space of A. Clearly state your answers using complete sentences.
$A=\left[\begin{array}{ccccc}1 & -2 & 0 & -1 & 5 \\ -2 & 4 & 4 & 2 & -2 \\ 0 & 0 & 4 & 5 & 0\end{array}\right]$
6. (10 points) Consider the linear transformation $T: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ defined by $T\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}+2 \mathrm{x}_{3}, 2 \mathrm{x}_{2}-6 \mathrm{x}_{3}\right)$.
a. Show how to find Ker T. Describe Ker T explicitly using parametric vector form.
b. Show how to find the range of T. Describe the range explicitly using parametric vector form.
7. (5 points) Consider the matrix A below, the linear transformation $T: R^{m} \rightarrow R^{n}$ defined by $\mathrm{T}(\mathbf{v})=\mathrm{Av}$, and the linear system defined by $\mathrm{Ax}=\mathbf{0}$

$$
A=\left[\begin{array}{cccccc}
2 & 0 & 4 & 6 & 0 & -4 \\
0 & 1 & 0 & 3 & -1 & 0 \\
0 & 1 & 0 & 4 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

Specify each of the following:

$\operatorname{Rank} \mathrm{A}=$	Dim Domain of $\mathrm{T}=$
$\operatorname{Dim~Nul~} \mathrm{A}=$	Dim Range of $\mathrm{T}=$
$\operatorname{Dim~} \operatorname{Col} \mathrm{A}=$	Dim kernel of $\mathrm{T}=$

$\operatorname{Dim} \operatorname{Col} \mathrm{A}=$
Dim kernel of $\mathrm{T}=$

Rank A + Dim Nul A =
$\mathrm{Ax}=\mathbf{0}$ has \qquad free variables. A has \qquad pivot columns.
8. (10 points) $B=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]\right\}$ and $C=\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\}$, are both bases for R^{2}.
a. If $[\mathbf{v}]_{B}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$, show how to determine the coordinates of \mathbf{v} relative to the standard basis.
b. If $\mathbf{u}=\left[\begin{array}{c}5 \\ 13\end{array}\right]$, specify $[\mathbf{u}]_{B}$.
c. Show how to apply an algorithm to find the change-of-coordinates matrix from B to C, and clearly identify that matrix.
d. Show how to use the change-of-coordinates matrix you found in part c . to obtain $[\mathrm{v}]_{C}$ if $[\mathbf{v}]_{B}=\left[\begin{array}{c}10 \\ 5\end{array}\right]$.

