
PascGalois Project 2
Pattern Recognition Using Dihedral Groups

We are now ready to generalize the construction for Pascal’s triangle mod
n. Motivated by the fact that addition mod n is the group multiplication
for the cyclic group Zn, we now take any finite group G and let a, b ∈ G. A
PascGalois triangle is formed by placing a down the left side of an equilat-
eral triangle and b down the right. An entry in the interior of the triangle
is determined by multiplying the two entries above it using the group multi-
plication. Of course, if G is nonabelian then one must specify a left or right
multiplication. We denote this PascGalois triangle by (PG, a, b). When a and
b are clear from context we denote it simply by PG. Note that Pascal’s tri-
angle mod n is (PZn , 1, 1). We will denote this simply PZn . The construction
of (PG, a, b) is the following:

a
a b

a ab b
a a2b ab2 b

a a3b a2bab2 ab3 b
...

...

Note that the a on top of the triangle is arbitrary and only appears for
aesthetics. As a mathematical structure, PG really begins at the second
row. The word PascGalois comes from “splicing” Pascal with Galois. Galois
(1811-1832) pioneered the study of groups while working with the theory
of equations. Like Pascal’s triangle mod n, PascGalois triangles can have
many interesting patterns and self-similar properties. One of the goal’s of
this project, and the subsequent ones as well, is to understand these patterns
in terms of group structure. Hopefully, studying the plethora of patterns
within these triangles will provide you with a mechanism to visualize many
of the fundamental concepts from abstract algebra.

In this project we will consider the dihedral groups Dn, n ≥ 3 and intro-
duce the concept of a p−group. Dihedral groups are the symmetry groups
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of regular polygons. D3 is the symmetry group of an equilateral triangle, D4

is the symmetry group of a square, D5 is the symmetry group of a regular
pentagon, and so on. If M is an n sided regular polygon, then M has n ro-
tational symmetries and n reflectional symmetries. Hence the corresponding
symmetry group has 2n elements. For example, let us consider the symmetry
group of a square with corners labeled 1,2,3 and 4:

1 2

3 4

By turning the square counterclockwise, we see that there are 4 rotational
symmetries: 0◦, 90◦, 180◦, and 270◦. Of course 360◦, 450◦, ... are also sym-
metries, but they are equivalent to one of the four already listed. Note that
we could also have done our rotations clockwise. We will use the convention
that all the rotations will be counterclockwise since each clockwise rotation
is equivalent to a counterclockwise rotation. Can you see why?

Wealso see that there are four axes for reflectional symmetries. There is a
vertical axis that bisects the square. Reflecting about this axis interchanges
corners 1 and 2 and also 3 and 4. There is an analogous horizontal axis.
Reflection about it interchanges 1 and 3 and also 2 and 4. Finally, there are
two axes passing through the diagonals of the square. One passed through
corners 1 and 4. Reflection about this axis leaves corners 1 and 4 fixed but
interchanges 2 and 3. You should be able to describe the last axis at this
point.

We say a group G is a p−group if |G| = pn for some prime p. An equivalent
definition is that G is a p−group if, given any a ∈ G, o(a) = pm for some
nonnegative integer m. Here p is a fixed prime. For example the cyclic groups
Z17, Z4, Z27, and Z125 are all p-groups. However, Z6 is not a p−group. Why?
Before continuing to the problems below answer the following:

Question: Dn is a p−group if and only if .
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Exercises:

For the first few problems we will consider the dihedral groups D3 and D4.

1. Using PascalGT, draw the first 16 and 32 rows of (PD3 , µ, σ) where σ is
the 120◦ rotation and µ is a reflection. Note that this is the default setting
in PascalGT (this corresponds to generators 1 and 3) so you do not need to
change the generators once you have chosen D3 as your group. Do you see
any patterns? How do these images compare with the Pascal’s triangle mod
n pictures?

2. Now draw the first 64, 128, 256, and 512 rows of the same triangle. As
you add more rows, what happens to the corresponding image? Are certain
group elements “clumping together” in the triangles. If so, how does this
relate to group structure? closure? If you have trouble seeing any patterns,
try changing the color scheme (see PascalGT instructions - Color Schemes 5
and 14 may be good choices). Note: Later when we study quotient groups,
it will be much easier to understand this triangle.

3. Repeat Exercises 1 and 2 for the D4 triangle. Compare and contrast the
images you see with the D3 images. Can you make a conjecture regarding
the differences between these two images?

4. Draw the first 64 and 128 rows of the D5, D6, D7, and D8 triangles.
Compare and contrast the qualitative properties of these images. Does your
conjecture in the previous exercise still seem to be true?

5. Earlier you should have given a necessary and sufficient condition forDn to
be a p−group. Which of the dihedral groups Dn, 3 ≤ n ≤ 8, are p−groups?
Does this seem to affect the appearance of the corresponding triangles?

6. Recall that two integers r and s are relatively prime if gcd(r, s) = 1.
Which of the dihedral groups in Exercise 5 have at least one pair of non-
identity elements whose orders are relatively prime and which do not? Look
at the subgroup triangles for these six PascGalois triangles. Is there any
correlation between the existence of group elements of relatively prime order
and the appearance of the subgroup triangles?
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