PascGalois Project 4

Direct Products and Automorphisms

Consider Pascal's triangle mod n. We have already observed that it is symmetric. This follows from the fact that Pascal's triangle is symmetric.

Question: What property of binomial coefficients causes this symmetry?
Another way we can interpret this symmetry is that reflecting the triangle about its central vertical axis induces the identity map $\iota: Z_{n} \rightarrow Z_{n}$ given by $\iota(m)=m$ for every $m \in Z_{n}$. That is, this reflection takes every color in the triangle to itself. Note that the identity map gives a (trivial) automorphism of Z_{n}. More generally, let G be any abelian group and $a, b \in G$. If we place a down the left side of the triangle and b down the right, then the group multiplication induces the following:

$$
\begin{aligned}
& \text { Let } V \text { denote the cent } \\
& V \text { then } a \longleftrightarrow b \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{a}\binom{n}{1}_{b}\binom{n}{0} \longleftrightarrow a\binom{n}{n}_{b}\binom{n}{n-1} \\
& { }_{a}\binom{n}{2}_{b}\binom{n}{1} \longleftrightarrow a\binom{n}{n-1}_{b}\binom{n}{n-2} \\
& { }_{a}\binom{n}{j}_{b}\binom{n}{j-1} \longleftrightarrow a\binom{n}{n-j+1}_{b}\binom{n}{j}
\end{aligned}
$$

$$
\begin{aligned}
& a
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
& a a_{a}\binom{n}{1}_{b}\binom{n}{0} \quad a_{a}\binom{n}{2}_{b}\binom{n}{1} \cdots_{a}\binom{n}{n-1}_{b}\binom{n}{n-2} \quad a_{a}\binom{n}{n}_{b}\binom{n}{n-1} \quad b
\end{aligned}
$$

Using the fact that $\binom{n}{k}=\binom{n}{n-k}$, we have $a\binom{n}{n-j+1}=a\binom{n}{j-1}$. So in general $a\binom{n}{j}_{b}\binom{n}{j-1} \longleftrightarrow a\binom{n}{j-1}_{b}\binom{n}{j}$. In other words, reflection about V just interchanges the exponents of a and b.
In this lesson we will investigate what happens when $\left(P_{Z_{n} \times Z_{m}}, a, b\right), a=(0,1)$ and $b=(1,0)$, is reflected about its central axis. Note that $Z_{n} \times Z_{m}$ is abelian so we can use the results from the previous paragraph.

Exercises:

1. Consider $\left(P_{Z_{2} \times Z_{2}}, a, b\right), a=(0,1)$ and $b=(1,0)$. Does reflecting this triangle induce a function $\phi: Z_{2} \times Z_{2} \rightarrow Z_{2} \times Z_{2}$? That is, can one color in two different locations of the triangle ever be sent to two different colors? (Recall that a function must have a unique output for a given input). If a function is not induced can you say why? If a function is induced, is there anything special about this map (think in terms of preserving algebraic structure)?
2. Consider $\left(P_{Z_{2} \times Z_{3}}, a, b\right), a=(0,1)$ and $b=(1,0)$. Does reflecting this triangle induce a function $\phi: Z_{2} \times Z_{3} \rightarrow Z_{2} \times Z_{3}$? If a function is not induced can you say why? If a function is induced, is there anything special about this map?
3.Now let us generalize the previous Exercises to $G=Z_{n} \times Z_{m}$, where n, m ≥ 2. Reflect $\left(P_{G},(0,1),(1,0)\right)$ about its central axis for various values of m and n. Try several combinations of n and m until you understand how these values affect the triangle. Give a conjecture as to when this reflection induces a function $\phi: Z_{n} \times Z_{m} \longrightarrow Z_{n} \times Z_{m}$? Note your answer will depend on the choices for n and m. When a set map is obtained, what special properties do you think it has?
3. (Optional) Give a proof for your conjecture(s) in the previous exercise. You may want to use the result discussed above that $a\binom{n}{j}_{b}\binom{n}{j-1} \longleftrightarrow$ ${ }_{a}\binom{n}{j-1}_{b}\binom{n}{j}$ for any a, b from an abelian group G.
