PascGalois Project 6 Quotient Groups 2

This lesson is a continuation of the work you did with quotient groups in Project 5. There you considered chains of subgroups of the form $G \geq H \geq$ $\{e\}$, where e is the identity of G. Note that chains of this form have length 2 . You may wonder what happens if one considers longer chains of subgroups of the form $G \geq H_{1} \geq H_{2} \geq \cdots \geq H_{n} \geq\{e\}$. We will consider such chains in this lesson. Note that if H_{i+1} is a normal subgroup of H_{i} for $i=1, \ldots, n-1$ and H_{1} is a normal subgroup of G, then we may construct quotient groups $G / H_{1}, H_{1} / H_{2}, \ldots, H_{n-1} / H_{n}$, and $H_{n} /\{e\} \cong H_{n}$. In this case the chain is called a subnormal series and written $G \triangleright H_{1} \triangleright H_{2} \triangleright \cdots \triangleright H_{n} \triangleright\{e\}$ (in general, $H \triangleleft G$ means H is a normal subgroup of G).
For our first example, we will consider the subnormal series $Z_{8} \triangleright\{0,2,4,6\} \triangleright$ $\{0,4\} \triangleright\{0\}$ (since Z_{8} is abelian, we know that each subgroup in the chain is a normal subgroup of the proceeding group).

Exercises:

1. Using PascalGT draw the first 64 rows of Pascal's triangle mod 8. Look at the image you just created. Find the $\{0,2,4,6\}$ subgroup triangles in your image. Next consider the quotient group $Z_{8} /\{0,2,4,6\}$. Determine the cosets of this quotient. Using the color options in PascalGT, re-color the elements of Z_{8} by identifying elements in a common coset with the same color. You will need a distinct color for each coset. Redraw the triangle and describe the picture that you obtain.
2. Go back to the $\{0,2,4,6\}$ subgroup triangles that you identified in Exercise 1. Identify the $\{0,4\}$ subgroup triangles within the $\{0,2,4,6\}$ subgroup triangles. Determine the cosets for $\{0,2,4,6\} /\{0,4\}$. Using the Color Subsets options in PascalGT, re-color the elements of a $\{0,2,4,6\}$ subgroup triangle by identifying elements in a common coset with the same color. Re-draw the subgroup triangle and describe what you see.

The next example we will consider is the dihedral group D_{4}, the symmetry group of a square. You may want to review Project 2 regarding dihedral groups. Let us denote the corners of the square as follows:

Then the elements of D_{4} in cycle notation are as follows:
$r_{0}=(1) \quad r_{1}=(1342) \quad r_{2}=(14)(23) \quad r_{3}=(1243)$
$\mu_{1}=(12)(34) \quad \mu_{2}=(13)(24) \quad \mu_{3}=(23) \quad \mu_{4}=(14)$
Certainly r_{0}, r_{1}, r_{2}, and r_{3} are counterclockwise rotations of $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°, respectively. Then r_{0} is the identity of D_{4}. The last four elements correspond to the reflectional symmetries of the square.
3. Using PascalGT draw the first 64 rows of $\left(P_{D_{4}}, 4,1\right)$. Note that the program labels the rotations (from smallest to largest) as $0,1,2$, and 3 . Likewise the reflections are $4,5,6$, and 7 . Now look at the image you just created. Find the rotational subgroup triangles. Caution: It may appear that the subgroup triangles only contain 2 of the 4 rotations. However, look more closely. There should be some subgroup triangles containing all 4 rotations. Describe how each of the 4 rotations is distributed within the subgroup triangle.
4. Note that $H_{1}=\left\{r_{0}, r_{1}, r_{2}, r_{3}\right\}$ is a normal subgroup of D_{4} (why?). So D_{4} / H_{1} is a quotient group. What is the order of this group? What are the cosets? Which coset acts as the identity? Using the color options in PascalGT, re-color the elements of D_{4} by identifying elements in a common coset with the same color. You will need a distinct color for each coset. Redraw the triangle and describe the picture that you obtain. Have you seen it before?
5. Explain why the chain $D_{4} \triangleright H_{1} \triangleright H_{2} \triangleright\left\{r_{0}\right\}$, where $H_{2}=\left\{r_{0}, r_{2}\right\}$, is a subnormal series. We have already considered the quotient D_{4} / H_{1} in the previous exercise. Go back to the H_{1}-subgroup triangles that you identified in Exercise 1. Identify the H_{2}-subgroup triangles within the H_{1}-subgroup triangles. Determine the cosets for H_{1} / H_{2}. Using the color options in PascalGT, re-color the elements of H_{1} by identifying elements in a common coset
with the same color. Re-draw the triangle and describe what you see. Does anything occur with this subnormal series and corresponding triangle that did not occur with the Z_{8} case from Exercises 1 and 2?
6. Consider the subgroup $H=\left\{r_{0}, r_{2}\right\}$ of D_{4}. You should check that this is indeed a normal subgroup and that $D_{4} \triangleright H \triangleright\left\{r_{0}\right\}$ is a subnormal series (note that $H=\{0,2\}$ in the notation of the program). Determine the cosets of D_{4} / H. This quotient is isomorphic to a group you have seen before. Which group is it? Using the color options in PascalGT, re-color the elements of D_{4} by identifying elements in a common coset with the same color. Re-draw the triangle and describe what you see. Is this a triangle you have seen before?

Now consider D_{8}, the symmetry group of a regular octagon.
7. Find a subnormal series $D_{8} \triangleright H_{1} \triangleright H_{2} \triangleright H_{3} \triangleright\left\{r_{0}\right\}$ where $\left|H_{1}\right|=8,\left|H_{2}\right|=4$,and $\left|H_{3}\right|=2$. Perform the same type of analysis that you did for D_{4} in Exercises 3,4 and 5 on this subnormal series. Do you obtain similar results?
8. Can you find a normal subgroup $H \triangleleft D_{8}$ such that $D_{8} / H \cong Z_{2} \times Z_{2}$? If so, redraw the D_{8} triangle by identifying colors according to cosetsso that your image looks like the Klien-4 triangle.

