
Asymptotic Analysis

Thomas A. Anastasio

January 7, 2004

1 Introduction

As a programmer, you often have a choice of data structures and algorithms.
Choosing the best one for a particular job involves, among other factors, two
important measures:

• Time Complexity: how much time will the program take?

• Space Complexity: how much storage will the program need?

You will sometimes seek a tradeoff between space and time complexity. For
example, you might choose a data structure that requires a lot of storage in
order to reduce the computation time. There is an element of art in making
such tradeoffs, but you must make the choice from an informed point of view.
You must have some verifiable basis on which to make the selection of a data
structure or algorithm. Complexity analysis provides one such basis.

2 Complexity

Complexity refers to the rate at which storage or time grows as a function of the
problem size (for example, the size of the data on which an algorithm operates).
The absolute growth depends on the machine used to execute the program, the
compiler used to construct the program, and many other factors. You would
expect most programs to run much faster on a supercomputer than on an old
desktop PC (and that often turns out to be the case).

We would like to have a way of describing the inherent complexity of a pro-
gram (or piece of a program), independent of machine/compiler considerations.
This means that we must not try to describe the absolute time or storage needed.
We must instead concentrate on a “proportionality” approach, expressing the
complexity in terms of its relationship to some known function. This type of
analysis is known as asymptotic analysis.

3 Asymptotic Analysis

Asymptotic analysis is based on the idea that as the problem size grows, the
complexity will eventually settle down to a simple proportionality to some known

1



function. This idea is incorporated in the “Big Oh,” “Big Omega,” and “Big
Theta” notation for asymptotic performance. These notations are useful for
expressing the complexity of an algorithm without getting lost in unnecessary
detail.

Speaking very roughly, “Big Oh” relates to an upper bound on complexity,
“Big Omega” relates to a lower bound, and “Big Theta” relates to a tight
bound. While the “bound” idea may help us develop an intuitive understanding
of complexity, we really need formal and mathematically rigorous definitions.
You will see that having such definitions will make working with complexity
much easier. Besides, the “bounds” terminology is really not quite correct; it’s
just a handy mnemonic device for those who know what asymptotic analysis is
really about.

3.1 Definitions of Big-Oh, Big-Omega, and Big-Theta

3Definition: T (n) = O(f(n)) if and only if there are constants c0 and n0 such
that T (n) ≤ c0f(n) for all n ≥ n0.

The expression T (n) = O(f(n)) is read as “T of n is in BigOh of f of n,” or
“T of n is in the set BigOh of f of n,” or “T of n is BigOh of f of n.”

The definition may seem a bit daunting at first, but it’s really just a math-
ematical statement of the idea that eventually T (n) becomes proportional to
f(n). The “eventually” part is captured by “n ≥ n0;” n must be “big enough”
for T (n) to have settled into its asymptotic growth rate. The “proportionality”
part is captured by c0, the constant of proportionality.1

The definition is “if and only if.” If you can find the constants c0 and n0

such that T (n) ≤ c0f(n), then T (n) = O(f(n)). Also, if T (n) = O(f(n)), then
there are such constants. It works both ways. It may be helpful to recognize
that O(f(n)) is a set. It’s the set of all functions for which the constants exist
and the inequality holds.

If a function T (n) = O(f(n)), then eventually the value cf(n) will exceed
the value of T (n). “Eventually” means “after n exceeds some value.” Does this
really mean anything useful? We might say (correctly) that x2 + 2x = O(x25),
but we don’t get a lot of information from that; x25 is simply too big. When
we use BigOh analysis, we implicitly agree that the function f we choose is
the smallest one which still satisfies the definition. It is correct and meaningful
to say x2 + 2x = O(x2); this tells us something about the growth pattern of
the function x2 + 2x, namely that the x2 term will dominate the growth as x
increases.

While BigOh relates to upper bounds on growth, BigOmega relates to lower
bounds. The definitions are similar, differing only in the direction of the in-
equality.

1To be mathematically precise about the notation, we should point out that it’s the absolute
value of the functions that is being compared. Since the time or storage of computer science
problems is always positive, we can neglect this nicety.

2



3Definition: T (n) = Ω(f(n)) if and only if there are constants c0 and n0 such
that T (n) ≥ c0f(n) for all n ≥ n0.

In this case, the function T (n) is proportional to f(n) when n is big enough,
but the bound is from below, not above. As with BigOh, the expression T (n) =
Ω(f(n)) is read as “T of n is BigOmega of f of n,” or “T of n is in BigOmega of
f of n,” or “T of n is in the set BigOmega of f of n.” Ω(f(n)), like O(f(n)), is
the set of functions for which the constants exist and the inequality holds.

As an example, it can be proven that any sorting algorithm that works by
comparison of elements requires at least Ω(n logn) time.

Finally, we define BigTheta. It is defined in terms of BigOh and BigOmega.
A function is in BigTheta if it’s both in BigOh and in BigOmega.

3Definition: T (n) = Θ(f(n)) if and only if T (n) = O(f(n)) and also T (n) =
Ω(f(n)).

Intuitively this means that f(n) forms both an upper- and lower-bound on
the function T (n); it is a “tight” bound.

For example, the heapsort algorithm is in O(n lgn), and (as with all sort-
ing algorithms that use comparisons) is in Ω(n lgn). Therefore, heapsort is in
Θ(n lgn).

4 Some Commonly Encountered Functions

The following functions are often encountered in computer science complexity
analysis. We’ll express them in terms of BigOh just to be specific. They apply
equally to BigOmega and BigTheta.

• T (n) = O(1). This is called constant growth. T (n) does not grow at all
as a function of n, it is a constant. It is pronounced “BigOh of one.” For
example, array access has this characteristic. The operation A[i] takes
the same number of steps no matter how big A is.

• T (n) = O(lg(n)). This is called logarithmic growth. T (n) grows as the
base 2 logarithm of n (actually, the base doesn’t matter, it’s just more
convenient to use base 2 in computer science - see Theorem 5 below).
It is pronounced “BigOh of log n.” For example, binary search has this
characteristic.

• T (n) = O(n). This is called linear growth. T (n) grows linearly with n. It
is pronounced “BigOh of n.” For example, looping over all the elements
in a one-dimensional array would be an O(n) operation.

• T (n) = O(n lg(n)). This is called “n log n” growth. T (n) grows as n
times the base 2 logarithm of n. It is pronounced “BigOh of n log n.” For
example, heapsort and mergesort have this characteristic.

3



• T (n) = O(nk) where k is a constant. This is called polynomial growth.
T (n) grows as the k-th power of n. Computer applications with k greater
than about 3 are often impractical. They just take too long to run for any
reasonably large problem. Selection sort is an example of a polynomial
growth rate algorithm. It is in O(n2), pronounced “BigOh of n squared.”

• T (n) = O(2n). This is called exponential growth. T (n) grows exponen-
tially. It is pronounced “BigOh of 2 to the n.” Exponential growth is the
most-feared growth pattern in computer science; algorithms that grow
this way are basically useless for anything but very small problems. In
computer science, we traditionally use the constant 2, but the any other
positive constant could be used to express the same idea.

The growth patterns above have been listed in order of increasing “size.”
That is,

O(1) = O(lg(n)) = O(n) = O(n lg(n)) = O(n2) = O(n3) = O(2n)

It may appear strange to use the equals sign between two BigOh expressions.
Since BigOh defines a set of functions, the notation O(f) = O(g) means that
the set of functions O(f) is contained in the the set of functions O(g). Note
that it is not true that if g(n) = O(f(n)) then f(n) = O(g(n)). The “=” sign
does not mean equality in the usual algebraic sense.

5 Best, Worst, and Average Cases

It’s usually not enough to describe an algorithm’s complexity by simply giving
an expression for O, Ω, or Θ. Many computer science problems have different
complexities depending on the data on which they work. Best, worst, and
average cases are statements about the data, not about the algorithm.

The best case for an algorithm is that property of the data that results in
the algorithm performing as well as it can. The worst case is that property of
the data that results in the algorithm performing as poorly as possible. The
average case is determined by averaging algorithm performance over all possible
data sets. It is often very difficult to define the average data set.

Note that the worst case and best case do not correspond to upper bound
and lower bound. A complete description of the complexity of an algorithm
might be “the time to execute this algorithm is in O(n) in the average case.”
Both the complexity and the property of the data must be stated. A famous
example of this is given by the quicksort algorithm for sorting an array of data.
Quicksort is in O(n2) worst case, but is in O(n lgn) best and average cases. The
worst case for quicksort occurs when the array is already sorted (i.e., the data
have the property of being sorted).

One of the all-time great theoretical results of computer science is that any
sorting algorithm that uses comparisons must take at least n lgn steps. That
means that any such sorting algorithm, including quicksort, must be in Ω(n lgn).

4



Since quicksort is in O(n lgn) in best and average cases, and also in Ω(n lgn),
it must be in Θ(n lgn) in best and average cases.

6 Example: List Implementation of Queue

Consider a simple list implementation of queue. In this implementation elements
are put on the queue at the end of the list and taken off the queue at the head.
Since a list requires sequential access to its elements, each enqueue operation
requires traversing the entire list to find the end, then “attaching” the new item
at the end. What is the asymptotic time complexity of this operation as a
function of n, the number of items in the queue? First of all, to find the end of
the list, we must traverse the entire list. This takes n operations (one “next”
operation for each item on the list). Therefore, a single enqueue operation has
asymptotic complexity T (n) = O(n). But, suppose we enqueue n items, one
after another? The asymptotic complexity will be T (n) = O(n2).

You may object that the list is not n long until all n items have been en-
queued. Look at it this way; the first item takes one operation, the second
takes two operations, the third takes three operations, etc. Therefore, the total
number of operations to enqueue n items is

1 + 2 + 3 + . . .+ n

We can express this as

n∑

i=1

i =
n(n+ 1)

2
=
n2 + n

2
= O(n2)

A better implementation would provide O(1) performance for each enqueue

operation, thereby allowing n items to be enqueued in O(n) time. This is
significantly better than O(n2).

7 Theorems Involving BigOh

Theorem 1 O(cf(x)) = O(f(x)) (multiplicative constants don’t matter)

� Proof: T (x) = O(cf(x)) implies that there are constants c0 and n0 such that
T (x) ≤ c0(cf(x)) when x ≥ n0

Therefore, T (x) ≤ c1f(x) when x ≥ n0 where c1 = c0c
Therefore, T (x) = O(f(x))
�

Theorem 2 Let T1(n) = O(f(n)) and T2(n) = O(g(n)).
Then, T1(n) + T2(n) = O(max(f(n), g(n))) (the sum rule)

� Proof: From the definition of Big Oh, T1(n) ≤ c1f(n) for n ≥ n1 and
T2(n) ≤ c2g(n) for n ≥ n2

5



Let n0 = max(n1, n2)
Then, for n ≥ n0, T1(n) + T2(n) ≤ c1f(n) + c2g(n)
Let c3 = max(c1, c2)
Then

T1(n) + T2(n) ≤ c3f(n) + c3g(n)

≤ 2c3 max(f(n), g(n))

≤ cmax(f(n), g(n))

�

As an example, suppose your program consists of a sequence of statements,
each with its own complexity. What is the complexity of the entire program?
Designating the time to complete statement i as Ti, the entire program will run
in time T =

∑k
i=1 Ti. From the sum rule, the complexity of the program is

given by the maximum complexity of the statements.

Theorem 3 If T (n) is a polynomial of degree x, then T (n) = O(nx)

� Proof: T (n) = nx + nx−1 + · · ·+ k is a polynomial of degree x
By the sum rule (Theorem 2), the largest term dominates.
Therefore, T (n) = O(nx)
�

As an example, it can be shown that in BubbleSort, SelectionSort, and

InsertionSort, the worst case number of comparisons is n(n−1)
2 . What is

O(n(n−1)
2 )? Well, n(n−1)

2 = n2−n
2 which is a polynomial. Since multiplicative

constants don’t matter (Theorem 1), O(n
2−n
2 ) = O(n2 − n). By the sum rule

(Theorem 2), O(n2 − n) = O(n2).

Theorem 4 If T1(n) = O(f(n)) and T2(n) = O(g(n)),
then T1(n)T2(n) = O(f(n)g(n)) (the product rule)

� Proof: Since T1(n) ≤ c1f(n) and T2(n) ≤ c2g(n), then T1(n)T2(n) ≤
c1c2f(n)g(n) ≤ cf(n)g(n) when n ≥ n0

Therefore, T1(n)T2(n) = O(f(n)g(n)) �

As an example, suppose you loop over an expression T1(n) = 5n times. If the
execution time of the expression is T2(n) = 10n+2, then the loop execution time
will be T (n) = T1(n)T2(n). Therefore, T (n) is in O(T1(n)T2(n)) = O(5n(10n+
2)) = O(50n2 + 10n) = O(n2).

Theorem 5 If T (n) = O(logB(n)), then T (n) = O(lg(n)) (base of logarithm
does not matter)

� Proof: T (n) = O(logB(n) implies that there are constants c0 and n0 such
that T (n) <= c0logB(n) when n > n0. But, logB(n) = lg(n)/ lg(B). Therefore,
T (n) <= c0

lgB lg(n) = c1 lg(n) when n > n0. Thus, T (n) = O(lg(n)) �

6



The proofs of Theorems 6 and 7, below, use L’Hospital’s rule. Recall that this
rule pertains to finding the limit of a ratio of two functions as the independent
variable approaches some value. When the limit is infinity, the rule states that

lim
x→∞

f(x)

g(x)
= lim
x→∞

f ′(x)

g′(x)

where f ′(x) and g′(x) denote the first derivatives with respect to x.
We use L’Hospital’s rule to determine O or Ω ordering of two functions.

if lim
x→∞

f(x)

g(x)
= k, then f(x) = O(g(x))

if lim
x→∞

g(x)

f(x)
= k, then f(x) = Ω(g(x))

where k is a finite constant, perhaps zero.

Theorem 6 lgk n = O(n) for any positive constant k

� Proof: Note that lgk n means (lgn)k

We must show lgk n ≤ cn for n ≥ n0. Equivalently, we can show lgn ≤ cn
1
k .

Letting a = 1
k , we will show that lgn = O(na), for any positive constant a. Use

L’Hospital’s rule:

lim
n→∞

lgn

cna
= lim
n→∞

lg e
n

acna−1
= lim
n→∞

c2
na

= 0

�

As a really outrageous (but true) example, lg1000000(n) = O(n). lgk grows
very slowly!

Theorem 7 nk = O(an) for a > 1 (no polynomial is bigger than an exponen-
tial)

� Proof: Use L’Hospital’s rule

lim
n→∞

nk

an
= lim

n→∞
knk−1

an ln a

= lim
n→∞

k(k − 1)nk−2

an ln2 a
= · · ·
= · · ·
= lim

n→∞
k(k − 1) · · · 1
an lnk a

= 0

�

As a really outrageous (but true) example, n1000000 = O(1.00000001n). Ex-
ponentials grow very rapidly!

7



8 Experimental Measurement

We may wish to check the complexity of a program by measuring the time it
takes to complete the program with various data sizes. There are two approaches
to doing this, both requiring measurement of the cpu time used by the program.

In the first approach, we measure the time T1 for a given data size and
the time T2 for twice that data size. If the complexity is O(f(n)), we expect
T2

T1
= f(2n)

f(n) . For example, for a cubic complexity, we expect T2

T1
= (2n)3

n3 = 8.

Thus, the program should take a factor of 8 longer when we double the data
size.

In the second approach, we measure the cpu time T (n) for a range of values

of n. To verify that a program is O(f(n)), we compute the ratio T (n)
f(n) for each

value of n. If T (n) = O(f(n)), the ratio should converge to some positive value
as n increases. When the ratios converge to zero, we know that T (n) = O(f(n)),
but that we have chosen a function f that is too large (recall how x2+x = O(x3),
but this is not very useful information because x3 is too large). When the ratios
diverge, we know that T (n) 6= O(f(n)).

8


