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Heap Operations

Introduction

These notes on heaps expound on Chapter 14 of “Data Structures with C++
using STL 2nd Edition,” William Ford and William Topp, Prentice-Hall, 2002.)

3 Definition: A binary max-heap is a complete binary tree in which, at every
node, the value at the node is no less than the value at either child

3 Definition: A binary min-heap is a complete binary tree in which, at every
node, the value at the node is no greater than the value at either child

• Note: The text calls these max-heap and min-heap, leaving off the “binary”
part.
• The usual implementation of a heap is as an array or vector. Any array or

vector can represent a complete binary tree. The values are taken in index-order
and put in the tree in level-order.

The array {15, 10, 3, 4, 7, 2} represents the complete binary tree (and
heap)

15

/ \

10 3

/ \ /

4 7 2

Given the index, i, of an element in a vector, the parent of that element
has index (i− 1)/2, its left child has index 2i+ 1, and its right child has index
2i + 2. Thus, in the vector above, the node with value 10 is at index 1. Its
parent is at (1− 1)/2 = 0, its left child is at 2× 1 + 1 = 3 and its right child is
at 2× 1 + 2 = 4.

The Operations

The operations on a heap and their worst-case asymptotic performance as a
function of the number of elements, n is:

push O(lgn)
pop O(lgn)
top O(1)

Construct from
random vector O(n)

top

The top operation just requires finding the element at index 0 of the vector.
This is clearly in O(1).
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push

The push operation inserts a new element into the heap. The operation is
implemented in two stages:

1. Insert the new element at the back of the vector (at index n). This is in
O(1), worst case.

2. Move the element up the tree (“percolate-up” or “heapify”) by iteratively
swapping it with its parent until it is in the correct heap location (no bigger
than its parent for a max-heap). push is in O(lgn), worst case, since the
maximum distance the new element might move is from the lowest level
to the root level. Since this is a complete binary tree, that distance is in
O(lgn).

Thus, the push operation is in O(1 + lgn) = O(lgn).

pop

The pop operation removes the root element from the tree. It is done in two
stages:

1. Exchange the root value with the value at index n−1 (the rightmost node
on the lowest level). This is in O(1), worst case.

2. “Re-heapify” (or “sift-down”) the tree by moving the new root value down
until it is in the correct heap location (no smaller than either child for a
max-heap). When moving it down, swap it with the larger of its two
children. As with push, the new root might move from the root level to
the lowest level, a distance in O(lgn).

Thus, the pop operation is in O(1 + lgn) = O(lgn).

Constructing a Heap from Scratch

Given an arbitrary vector (values not in heap order), the vector can be made
into a heap in O(n), worst case. Iteratively visit each node from the one at
index (n − 2)/2 up to the root node with index 0. In each iteration, move the
value at that index down the tree until it is in its correct heap location. The
text calls each such operation “adjustHeap.” It’s the same operation used in
pop to move the root down to its correct location.

An arbitrary vector can be put into heap order in O(n) steps using the
procedure above. A complete binary tree of height h has 2h−1 nodes at level
h− 1 (the level above the lowest).

2



In the procedure above, there are at most:

1 swap per node at level h− 1 (just swap with child below),

2 swaps per node at level h− 2 (swap with child and grandchild),

and so forth, down to

h swaps of the root at level 0.

Thus, the total number of swaps, worst case, is

0× 2h + 1× 2h−1 + 2× 2h−2 + · · ·+ h× 20 =
h∑

i=0

2i(h− i)

h∑

i=0

2i(h− i) = h
h∑

i=0

2i−
h∑

i=0

i2i = h(2h+1−1)− ((h−1)2h+1 +2) = 2h+1−h−2

The expression 2h+1 − h − 2 is in O(2h). Note that a complete binary tree
of height h has 2h+1 − 1 nodes, which is also in O(2h). Thus, the worst-case
number of swaps is on the same order as the number of nodes in the tree.
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