Cosc-320

Single-Source Shortest Path in Directed Graphs

November 29, 2003

Introduction

These notes on a shortest path algorithm expound on Chapter 16 of "Data Structures with C++ using STL 2nd Edition," William Ford and William Topp, Prentice-Hall, 2002, Section 16.6.)
\diamond Definition: The single-source shortest path problem is to find the shortest path (minimum number of edges) from a given starting vertex, V_{s}, to every other vertex in a directed graph $G(V, E)$.

- Note: The text calls this shortest-path leaving off the "single-source" part. The text also does not directly find the shortest-path to every vertex, it finds the shortest path from V_{s} to some other designated vertex.
- For an example, we use Figure 16-22 from the text, reproduced here.

The Algorithm

First, construct a two-dimensional table, T. The rows of T are indexed by the vertices in the graph. T has two columns, one called DIST and the other called VERT.
$T[V][\mathrm{DIST}]$ holds the distance (number of edges) from V_{s} to $V . T[V][\mathrm{VERT}]$ holds the vertex from which the algorithm arrived at V.

Initially, for each vertex, $V, T[V][\mathrm{DIST}]=\infty$ (except for the starting vertex, $\left.T\left[V_{s}\right][\mathrm{DIST}]=0\right)$ and $T[V][\mathrm{VERT}]$ is undefined (except $\left.T\left[V_{s}\right][\mathrm{VERT}]=V_{s}\right)$.

After choosing $V_{s}=F$ in the example graph, the initialized table will be:

Vertex	DIST	VERT
A	∞	
B	∞	
C	∞	
D	∞	
E	∞	
F	0	F

Now, construct an empty queue of vertices, Q and push V_{s} onto Q.

Finally, run the following loop:

```
while (Q is not empty)
{
    V = Q.top();
    Q.pop();
    for (each neighbor, W, of V)
        if (T [W][DIST] == INFINITY)
            {
                T[W][DIST] = T[V][DIST] + 1;
                T[W][VERT] = V;
                Q.push(W);
            }
}
```

After running the algorithm on the graph in Figure 16-22 from the text, table T will be:

Vertex	DIST	VERT
A	2	D
B	3	A
C	3	A
D	1	F
E	1	F
F	0	F

The length of the shortest path from V_{s} (namely vertex F) to a vertex V is found in $T[V][\mathrm{DIST}]$. Thus, the shortest path from vertex F to vertex C has path length of 3 . The shortest path from F to A has length of 2.

The table can also be used to determine the path in each case. To find the shortest path from V_{s} to V, start at $T[V][\mathrm{VERT}]$ and work toward V_{s}. To reconstruct the shortest path from F to C , observe that we got to C from A ; to A from D ; to D from F . Thus the path is $\mathrm{F}-\mathrm{D}-\mathrm{A}-\mathrm{C}$.

Performance

Setting up the table and queue is in $O(1)$. Accessing table and queue elements is also in $O(1)$ and is done a maximum of $|V|$ times. The loop is a breadth-first traversal of the graph which is in $O(|V|+|E|)$. Thus, the single-source shortest path algorithm is in $O(|V|+|E|)$.

