
A Fast Parallel Routing Algorithm for Benes Group Switches
Enyue Lu and S. Q. Zheng

Department of Computer Science
University of Texas at Dallas

Richardson, TX 75083-0688, USA�
enyue, sizheng � @utdallas.edu

ABSTRACT
A parallel routing algorithm for controlling the class of intercon-
nection networks called group connectors is presented. Given
any legal mapping from input to output groups with �������
busy inputs, this algorithm can determine the switch setting of
a Benes group connector with 	 inputs and
 output groups in
��������������������	�� time on a completely connected computer or
the EREW PRAM model with 	 processing elements. The im-
plementations of this algorithm on various realistic parallel ma-
chine models are also discussed.

KEY WORDS
Group Connector, Rearrangeable Nonblocking Interconnection
Network, Parallel Algorithm, Dense Wavelength-Division Mul-
tiplexing (DWDM), Network Switch, Network Router.

1 Introduction

An 	���	 permutation network is an interconnection network
consisting of 	 inputs, 	 outputs, switching elements (SEs) and
fabrics. Such a network can achieve any one-to-one correspon-
dence between inputs and outputs by properly setting up SEs to
establish link-disjoint paths from inputs to their corresponding
outputs. An 	���	 crossbar switching network is a straightfor-
ward permutation network. To improve the scalability of crossbar
switches, several permutation networks with reduced number of
SEs were proposed. Most noticeable ones include Clos networks
and Benes networks. Permutation networks are widely used as
switching matrices in network routers and switches.

Recently, a new class of interconnection networks called
group connectors were introduced [18]. A group connector� ��	! "
#� is defined as an interconnection network that consists
of 	 inputs and 	 outputs such that (1) its 	 outputs are divided
into
 output groups with 	%$�
 functionally equivalent outputs
in each group; and (2) it can provide any simultaneous ��	%$�
&� -to-
one connections from 	 inputs to
 output groups, possibly with-
out the ability of distinguishing the order of outputs within each
group. In this paper, we always assume that 	('*),+� "
-'*)�+/.10 ,2�3546387

and
293 � 3 	 where � is the number of busy

inputs. Another type of 	:�%	 group connector
�<; ��	! "
#� can be

defined by dividing its 	 inputs and 	 outputs into
 equal-size
groups, respectively. For

� ; ��	! "
#� , if the inputs in the same input
group are allowed to be connected to the outputs in different out-
put groups,

� ; ��	! "
#� and
� ��	! "
#� are the same in functionality;

otherwise
 separate planes of 	%$�
=�>	%$�
 permutation networks
can be used to implement

�?; ��	! "
#� .
Clearly, an 	@�A	 permutation network is a group connec-

tor
� ��	! "
#� with
B'C	 . Nonblocking and rearrangeable non-

blocking group connectors based on Clos and Benes networks

were proposed in [18], and it was shown that a group connec-
tor
� ��	! "
#� can be built at a lower hardware cost than that of a

permutation network of the same size. For example, an 	��9	
Benes network, denoted by D%��	�� , is a rearrangeable nonblock-
ing permutation network with ��	%$�)���EF��)&�����	@GIHJ� SEs, and a
rearrangeable nonblocking

� ��	� K	%$�) 0 � based on DL��	�� can be
built with ��	%$�)��MEN��)&�����	OG6H�G 4 � SEs. The saving in SEs by
using

� ��	! "	%$�)�0�� is ��	A$�)��#E 4 . (In this paper, all logarithms are
in base 2 and all SEs are in size of)L�-) .)

In general, a group connector
� ��	! P
#� captures the simul-

taneous connections between 	 clients and 	 servers which are
divided into
 equal-size server groups such that the 	%$�
 servers
in each group are functionally equivalent. A group connector� ��	! "
#� can also be viewed as an
Q�B
 permutation network
with internal speedup of factor 	%$�
 achieved by space-division
multiplexing [17].

...

...

...

Ch
Ch
Ch

1,1
1,2
1,N/n

OLC

OLC

OLC

1

2

n

...

.

.

.

.

.

.

ILC

ILC

ILC1

2

3

ILCN

Ch
Ch
Ch

2,1
2,2
2,N/n

Ch
Ch
Ch

n,1
n,2
n,N/n

Switching Matrix M

N/n

N/n

N/n

Figure 1: Block diagram of an ingress edge router.

Group connectors are particularly useful in dense
wavelength-division multiplexing (DWDM) networks. With
DWDM, it is now possible to transmit different wavelengths of
light over the same fiber, which has provided another dimension
to increase bandwidth capacity. A group connector can be used
as a switching network in a DWDM router. For example, if some
inputs and one or more groups of outputs are connected to a local
node, a group connector can be used as an add-drop cross-connect
switching matrix. Group connectors have applications in the
construction of ingress edge routers of DWDM networks. An
ingress edge router in a DWDM optical network has a set of
	 electrical or optical input links and a set of
 optical output
links. Each optical output link R consists of a set of 	%$�
 data
channels SUT#VXW YZ [E\E]E\ "SUT V�W ^�_P` , each using a different wavelength.
Associated with each input link, there is an input line card (ILC)
and associated with each output link there is an output line card
(OLC). There is a switching matrix a between ILCs and OLCs.
There are 	%$�
 connections from the output of a to each OLC.
The main function of each bNcdS is to route input packets to
appropriate OLCs by routing table lookup. Each OLC transmits
the packets it received using
 optical channels of the link it
controls. The block diagram of a DWDM ingress edge router is
shown in Figure 1. A group connector

� ��	! "
#� served as the

major switching matrix a in the design of ingress edge routers
of a burst-switched DWDM network [19].

A permutation network is rearrangeable nonblocking if it
can realize all possible permutation connections between inputs
and outputs when the rearrangement to existing connections is
permitted [2]. Similarly, a group connector is rearrangeable non-
blocking if it can realize all possible connections between the in-
puts and group outputs when the rearrangement to existing con-
nections is permitted. We show that

� ��	! "
#� is a rearrangeable
nonblocking group connector in the theorem 1 and call a rear-
rangeable nonblocking group connector

� ��	! "
#� based on Benes
network a Benes group connector, or a Benes group switch. Rear-
rangeable nonblocking networks, including Benes networks and
Benes group connectors, are very attractive for fixed-size cell
switching architecture. In such a switch, variable length pack-
ets are segmented into cells upon arrival, transferred across the
switch matrix, and then reassembled again before they depart.
Using fixed-size cells allows for slotted switching, which makes
it easier for the scheduler to configure the switch matrix for high
throughput.

When a group connector is used as a switching matrix in a
high-speed packet router/switch, packet-forwarding speed is cru-
cial. There are several factors that affect packet-forwarding speed:
routing (label) table lookup, switch scheduling, switch setup and
switch internal transmission. For group connectors, the imple-
mentations of switch scheduling and switch setup are of particular
importance.

In this paper, we address the issue of how to quickly set
up SEs so that � edge-disjoint paths between inputs and output
groups are established in

� ��	� K
&� . In particular, we present a par-
allel algorithm, and its variations, for the setup of a Benes group
connector

� ��	! "
#� with � busy inputs. In this context, Benes
permutation network DL��	�� is a special case

� ��	! "	�� of Benes
group connectors. Thus, our algorithms can be applied to Benes
networks directly. Given any permutation assignment, all known
sequential algorithms for setting up the DL��	�� take ����	I���� 	��
time [7, 13, 15], and the best time complexity of parallel algo-
rithms is �������� � 	�� [11, 12]. Given any non-full permutation
assignment involving �����9� pairs of input and output, the paral-
lel algorithms to set up Benes network in �������� � 	�� time and in
������������(� �����	�� time were proposed in [9] and [6] respec-
tively. Our main algorithm extends the algorithm [6] to set up
Benes group connector for non-maximum mapping between in-
puts and output groups, using techniques such as pointer jumping
[12], parallel prefix sum [5] and parallel sorting [4]. As the al-
gorithm of [7], our algorithm sets up SEs in the first �����	@G H
stages of

� ��	! P
#� so that the SEs in the remaining stages can be
set up by self-routing. Furthermore, as the algorithm of [15], our
algorithm implies that additional)�	@G �

crossing points can be
eliminated from Benes group connector

� ��	!
#� . Consequently,
the number of saved crossing points in Benes group connector� ��	! "	%$�) 0 � is increased to)�	 E 4 ��)�	 G �

, compared with
the 	 �9	 Benes network. On the other hand, given any non-
maximum mapping with � busy inputs, our algorithm runs in
������������ � �����	�� time on a completely connected computer
or the EREW PRAM model with 	 processing elements(PEs) as
the algorithm of [6]. When implemented on a perfect shuffle com-
puter and a hypercubeof 	 PEs, �������� � � �U���� � �QE �����	�� time
is sufficient. Our algorithm takes the advantages of algorithms of
[7] and [6, 12]. To our knowledge, all known algorithms for set-
ting up Benes networks D%��	�� cannot be directly applied to set up
Benes group connectors. However, by letting
B':	 , our algo-

rithm for
� ��	! "
#� can be directly applied to set up Benes network

D%��	�� with the same time complexity.

2 Preliminaries

A Benes network D%��	�� is a multistage rearrangeable nonblock-
ing permutation network [1]. Each SE in a Benes network has two
inputs and two outputs, named sibling inputs and outputs. Each
busy input is connected with one of sibling outputs. If the busy
input is connected with output horizontally, we say that this input
is set straight, and cross otherwise (Figure 2(a)). Benes networks
are constructed recursively. A DL��	�� consists of a switching stage
with 	 SEs, an 	%$�) ��) shuffle connection(i.e. the output R is
connected to the input ����������R ��' �
	�R ��� R $���J� mod 	� in two
continue stages [14]), followed by two DL��	%$�)�� , a)=�A	%$�) shuf-
fle connection, and a switching stage with 	 SEs. A D%�PH��,� is
shown in Figure 2(b).

A Benes group connector
� ��	! "
#� is constructed from a

Benes network D%��	�� by permanently setting all inputs in its last4
stages straight, which leads to eliminating these SEs (see Figure

2 (c) for an example).
An � -level subnetwork � 2�3 � 3 ���� 	 G5H]� of Benes

group connector
� ��	! "
#� is defined as a Benes group connec-

tor
� ���� T#� so that � ')�+/.�� and T*'����������! "
 � . Thus a� ��	! "
#� contains)!�"� -level subnetworks. Clearly,

2
-level sub-

network of
� ��	� K
&� is itself. Figure 2(c) shows a

� �PH��� � � ,
which contains)�H -level subnetworks

� �
#F � � , �) -level subnet-
works

� � � � � , and #%$ -level subnetworks
� ��) [)�� . All SEs in

the first(resp. last) stage of subnetwork
� ���! PT#� are called in-

put(resp. output) SEs of
� ���! �T#� .

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1

2

3

0

(b)

INPUTS OUTPUTS

OUTPUT GROUPSINPUTS

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

1-level subnetworks

2-level subnetworks

3-level subnetworks

(c)

(a)
Straight Cross

Figure 2: Construction of a Benes group connector: (a) States of
SEs; (b) A H�� ��H&� Benes network; (c) A Benes group connector� �PH��� � � with

4 ') based on H�� ��H�� Benes network.

For a
� ��	!
&� , we label the 	 inputs(outputs) as2 [H�]E\E\E\ K	 G!H ,
 group outputs as

2 \E\E\E["
/G!H , and 	%$�) SEs in
each stage as

2]E\E\E\ K	%$�) G%H from top to bottom. And) �����	BG%H
stages are indexed

2
through)&�����	@GB) from left to right. De-

note every input, output and output group of
� ��	! "
#� by b]V , �UV ,

and
�('

respectively, where
2 3 R 3 	CGIH and

2 3*) 3
 GQH .
Thus � V connects to

� '
where

) 'CR mod
 in the last stage of

� ��	! "
#� and every
�('

consists of � ' ^�_P` ��� , 2 3�� 3 	A$�
 G6H .
For a pair of sibling inputs(resp. outputs), one with even label
is called upper input(resp. output) and another with odd label is
called lower input(resp. output). Let b , � and

�
be the sets of 	

inputs, 	 outputs and
 output groups of
� ��	�
#� respectively.

Let ��� b	� G�
 �
be an bN$ � mapping that indicates connection

requests from inputs to output groups. If there is a connection
request from b V to � ' , set � ��R �<')

and call b V as a busy input;
otherwise set � ��R ��' G?H and call bJV as an idle input. An I/G
mapping from b to

�
is legal if each bJV is mapped to at most one� '

and at most 	%$�
 different b V ’s are mapped to the same
� '

.
When used as a switching matrix, legal mappings can be enforced
by using the arbitration hardware [16, 20]. A legal I/G mapping is
maximum if all inputs are busy inputs, and non-maximum other-
wise. We denote a legal I/G mapping involving � busy inputs as
�� � . Clearly, if �(' 	 , �� 	 is a legal maximum I/G mapping.
If an input SE has) (H or

2
) busy inputs, it is called busy(semi-

busy or idle) input SE. A Benes group connector
� ��	! "
#� has a

feasible configuration for a given ��� � if all SEs can be set up so
that there are � edge-disjoint paths with each of them connecting
the busy input b V to output group

����� V�� . Thus,
� ��	!
#� is rear-

rangeable nonblocking if it has a feasible configuration for any
�� � .

3 Graph Model

Each
� ��	� K
&� with a legal mapping �� � can be represented as a

graph �� as following:
Case 1: 	C'�
 .
The vertex set �%� �� ��' ����� � is an input SE or an output SE � and
edge set ��� �� � ' � ���F ���� R ��� there is a busy input R of input SE �
with � ��R � being an output of output SE � � .
Case 2: 	!
 .
The vertex set �%� �� �U' ����� � is an input SE or a group output �
and edge set ��� �� ��' �N���F "���"R ��� there is a busy input R of input
SE � with � ��R �d'#� � .

It is clear that �� is a bipartite graph in both cases with all
input SEs as one part A and all output SEs for Case 1 or all out-
put groups for Case 2 as another part B. And each edge is corre-
sponding to a pair of input and its mapped output group. There
is a one-to-one corresponding relation between every busy input
of
� ��	!
&� and every edge of �� . We label each edge by its cor-

responding busy input. Hence, we can exchange notation of edge
and its corresponding input. If an edge is the end edge of a path,
we say its labeled input is the end input of the path; if two edges
are adjacent, we say their labeled inputs are adjacent; if an edge is
colored with some color, we say its labeled input is colored with
that color.

A graph �� is) -coloring if we can color ��� �� � by) colors
so that every vertex with degree $ has %&$�$�)(' edges with one color
and �&$�$�) � another color. In the following theorem, Theorem 1,
we show that

� ��	! "
#� with a legal I/G mapping ��� � has a feasi-
ble configuration, which is done by showing �� is 2-coloring. The
proof of theorem 1 not only shows Benes group connector is re-
arrangeable nonblocking, but also implies a sequential algorithm,
which we will implement in parallel in next section, to set up SEs
for any legal I/G mapping of Benes group connector.

Theorem 1 Given any legal I/G mapping �� � of a Benes group
connector

� ��	! P
#� , � ��	! "
#� has a feasible configuration.

Proof. Let
� ���! PT#� be the � -level subnetwork of

� ��	�
#� . The
proof is done by induction on � . If � ' �����	@G*H , � ���! �T#� is

� ��) K)�� or
� ��)]H]� which consists of a single node (i.e., a single

)%�-) SE) and the claim is obviously true. Assume that the claim
is true for any � -level(

2*) � 3 �����	:G6H) subnetwork
� ���� T#� .

For any legal I/G mapping of
� ��	! "
#� , we know that

� ��	! "
#� (i.e.2
-level subnetwork) can be represented as a bipartite graph �� .

We first prove �� is 2-coloring. Since �� is bipartite, �� does not
contain any odd cycle, i.e. any cycle in �� has even number of
edges [3]. So ����� � is the union of a set of even cycles and paths.
Thus we can alternately color each edge with one of two different
colors beginning with any busy input along each even cycle or
path so that the adjacent edges on the same cycle or path have
different colors. We know that every vertex in part A has degree3) since each input SE has at most) busy inputs, and every
vertex in part B has degree

3) for Case 1 or
3),0 for Case 2

since each output SE has at most) outputs or each output group
are mapped by at most) 0 busy inputs respectively. Thus, if a
vertex with degree $, then its adjacent %&$�$�)(' edges are colored
with one color and �&$�$�) � edges are colored with another color.
Therefore �� is) -coloring.

Then we show that there is a feasible configuration of Benes
Group Connector

� ��	!
#� if its graph model �� is) -coloring. We
let two ends(i.e. input and its mapped output group) of the edges
with the same color connect with the same H -level subnetwork.
Thus every pair of input and its mapped output group is connected
with the same H -level subnetwork, which generates two legal bN$ �
mappings for two H -level subnetworks of

� ��	! P
#� . By induction,
each of H -level subnetworks has a feasible configuration. There-
fore,

� ��	�
#� has a feasible configuration.
We define mapping constraints as follows: for any � -level

subnetwork
� ���! PT#� of

� ��	�
#� (
2%3 � 3 ���� 	 G�)),

(1) Every busy input of input SEs and its mapped output group
are connected with the same �d�IH -level subnetwork.
(2) Two sibling inputs(outputs) are connected with the different
� � H -level subnetworks.
(3) If �+ 8T , the busy inputs of

� ���! �T#� mapped to the same
output group are enforced to be partitioned into two parts with
each size

3 � $N��)ZT#� , which are connected with the different ���%H -
level subnetworks

� ��� $�)N PT#� ; otherwise (i.e. �('IT), two inputs
mapped to two sibling outputs must be connected through its two
different

� ��� $�) � $�)�� subnetworks.
By theorem 1 and topology of

� ��	!
#� , we have the fol-
lowing corollary.

Corollary 1 Given any legal I/G mapping ��� � , , is a feasible
configuration if and only if , satisfies the mapping constraints.

4 Algorithm

For a legal I/G mapping �� � , any busy input b V is specified to be
connected to a unique output group

� '
. We consider the opera-

tion of setting up � edge-disjoint paths from busy inputs to their
mapped output groups as a routing process, and an algorithm for
establishing I/G connections as a routing algorithm. Our rout-
ing algorithm is based on the sequential algorithm of [7] and the
parallel algorithm of [6, 12] for routing a permutation in Benes
network.

To facilitate our discussion, we denote - � �/.#� be the
�
-th sig-

nificant bit - � of the binary representation -�0(-�0 . Y E\E[E1- � E\E\E1-]Y"-32 of
integer . , and denote 4. be the integer with binary representation
- 0 - 0 . Y E\E\E1- � E\E[E1- Y �PH G5- 2 � .

A
� ��	! "
#� consists of)&�����	5G�H G 4 stages. It can be re-

garded as a concatenation of two parts, P1 being the first �����	 G<H

stages, and P2 being the remaining stages. For each busy input
b\V of P2 in stage � of

� ��	! "
#� , we define its control bit to be
- � � ��� ^ . �\.#0Z. � ��� ��R �P� . The control bit is used to do self-routing.
If the control bit for a busy upper input is

2
(resp. H), then this

busy input is set straight(resp. cross); if the control bit for a busy
lower input is

2
(resp. H), then this busy input is set cross(resp.

straight).

Lemma 1 If a Benes group connector has a feasible configura-
tion for a legal I/G mapping �� � , then all busy inputs of P2 can
be set up by control bits.

Proof. It is clear by figure 3, where SU 1.�� � 2 [H � and S is the
control bit.

0001

0010

0011

0000

INPUTS OUTPUT GROUPS

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0000
0001

0011
0010

0000

0010

0011

0001

0000

0000

0001

0010
0011

0001

0010
0011

000C

000C

000C

000C

000C

000C

000C

000C

000x
001x

001x
000x

000x
001x

000x

001x

000x
001x

000x
001x

000x

001x

000x
001x

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

00Cx

000C

000C

000C

000C

000C

000C

000C

000C

Figure 3: Hardware redundancy of ��H and control bit selection
of �?) in

� �PH&�F � � .

If we define P2-passable condition of
� ��	! "
#� as (2) and

(3) of the mapping constraints, by corollary 1 and lemma 1, we
have the following claim:

Theorem 2 For any legal I/G mapping �� � of
� ��	� K
&� , if P1 is

set up to satisfy P2-passable condition and P2 is set up according
to control bits, then the setting of

� ��	! P
#� is a feasible configu-
ration.

Our algorithm, named ROUTE, is presented for a parallel
computer with 	 PEs that are completely connected, i.e. the in-
terconnection topology of this computer is a complete graph of
	 vertices. This algorithm is equivalent to an EREW PRAM al-
gorithm. The 	 PEs are labeled as

2 \H� \E\E\E\ K	 G H , and � � V
and � ��� V are called sibling PEs. Algorithm ROUTE consists
of three phases: INITIAL PHASE, PHASE I and PHASE II. In
INITIAL PHASE, the total number of busy inputs is computed.
In PHASE I, the setting of all SEs in the first ���� 	@G*H stages
are determined. In PHASE II, self-routing is performed for the
SEs in the remaining stages. Conceptually, PHASE I consists of
���� 	 G�H iterations and each iteration contains

�
steps. In the

R -th iteration, H 3 R 364 , the setting of busy inputs of stage R&G6H
are determined in the following way: we only consider) V . Y inde-
pendent ��R G6H]� -level subnetworks so that P2-passable condition
is satisfied in each subnetwork. In the � 4 �QH]� -th iteration, we en-
counter)�0 independent DL��
#� routing problems. Then, for each
such problem, our algorithm degenerates to a parallel routing al-
gorithm based on the sequential algorithm of [7]. PHASE II is
self-routing process. Since P2-passable condition is satisfied after
PHASE I, this guarantees that self-routing for P2 is always possi-
ble by theorem 2. P2 is set up by control bits. The basic structure
of algorithm is given as follows:
Algorithm ROUTE
Input: A legal mapping 	�
 � for ����������
Output: A feasible configuration of ����������

begin
INITIAL PHASE: find total number of busy inputs
PHASE I: set up busy inputs in stage ������� �!�#"%$'&��)(+*'�

step 1: find dual inputs
step 2: find representatives
step 3: set busy inputs
step 4: assign mapping

PHASE II: set up busy inputs in remaining stages by control bits
end

We discuss the idea and implement technique of our algo-
rithm in the following, and omit the details for brevity. Initially,
each � � V is associated with the value of � ��R � .
INITIAL PHASE: find total number of busy inputs, which can
be done by Parallel Prefix Sums algorithm in [5]. We mark ev-
ery � � V with � ��R � ,' G?H for parallel prefix sums. After INI-
TIAL PHASE, the total number of busy inputs is stored into the
global variable � .

Step 1: find dual input for busy input.
In graph model �� , the degree of each vertex in part B is $ with2 3 $ 3) � where

� ' H for Case 1 and
� ' 4 for Case 2, which

shows $ busy inputs are mapped to the sibling outputs for Case 1
and to the same output group for Case 2 respectively. Every set
of those $ inputs will be paired up as � $�$�) � pairs of dual inputs,
which can be done by parallel integer sorting on � busy inputs.
In order to pair two inputs as dual inputs, firstly, we construct �
pairs with each one consisting of the labels of one busy input and
its mapped output group. Then, we sort those � pairs by the keys
being the second values of pairs, which are output groups mapped
by busy inputs. In stage � with �.- 4 , Case 1 of graph model hap-
pens, i.e. at most one input is mapped to the same output group.
In this case, we sort all pairs by permutation on keys, which takes
���PH]� time. After permutation, if there are two pairs in a pair of
sibling PEs, those inputs in the first values of two pairs are paired
up as dual inputs. In stage � with �)�4 , Case 2 of graph model
happens, i.e. there are maybe more than one input mapped to the
same output group. In this case, we first sort all pairs by parallel
integer sorting on the keys [4], which takes ��������>�9� time. Each
pair ��R � ��R �P� is stored in � � � � V�� where ���R � is the rank of b\V by
sorting. If there are two pairs in a pair of sibling PEs, those in-
puts in the first values of two pairs are paired up as dual inputs.
It is not difficult to see that if there is odd number of busy inputs
mapped to some output group, we have finished finding dual in-
puts for those busy inputs, but not for the case in which an even
number of busy inputs is mapped to some output group. Because
two inputs, one b + V�` with the smallest label and another b +!/10
with the largest label among all inputs mapped to the same out-
put group as b + V�` and b +!/20 , might not be paired up due to b + V `
and b +!/20 not in a pair of sibling PEs. In order to pair up those
busy inputs, we mark every b V with minimum or maximum label
but not both among all inputs mapped to

����� V�� , which is can be
simply done by comparing the second value of pair stored in � � V
to see if it is different as exactly one of � � V . Y ’s and � � V � Y ’s if
H 3 R 3 �OG) , and otherwise(i.e. R ' 2 or �OGBH), comparison
is only done to � � Y for R>' 2 and to � �43 . � for R>'C�@G*H .
Then we perform parallel prefix sum on marked busy inputs and
each marked busy input will get a rank. We permute the marked
inputs by their ranks. After permutation, for every pair of sibling
PEs, if neither of their stored inputs is paired up and both of their
mapped output groups are same, we pair them up as dual inputs.
By step 1, we know that two busy inputs are adjacent in a path or
cycle if and only if they are sibling inputs or dual inputs. Thus ��
is partitioned into a set of edge-disjointed even cycles and paths

with length no more than)�� since each cycle or path visits every
vertex of �� at most once.

Step 2: find the representative for every busy input.
By the proof of Theorem 1, we know graph model �� is 2-coloring.
We choose a representative for the edges with the same color on
every cycle or path. Thus, each cycle or path has two different
representatives, and each represents the edges with the same color
in this cycle or path. For a cycle, we choose each representative
be the busy input with smallest label among all inputs with same
color in the cycle. It is clear that two representatives of a cy-
cle must be a pair of sibling inputs. For a path, If the end input
is the busy input of a semi-busy SE, it is chose as a representa-
tive of the path; otherwise the input adjacent to this end input is
chose as a representative of the path. Thus, for an even path, if
the end inputs are in semi-busy input SEs, we choose two repre-
sentatives be those two end inputs, and otherwise we choose two
inputs adjacent to end inputs. For an odd path with length 8H ,
only one of two end inputs of the path is in a semi-busy input
SE, and this end input is chosen as one representative, called pri-
mary representative of the odd path. And another representative,
called non-primary representative, is chosen be the input adjacent
to another end input in a busy SE. For a path with length H , two
representatives are same, corresponding to the only one input of
the path, and this one representative is also called primary repre-
sentative. The representative of busy input bJV , denoted by

7 ��R � ,
is one of the representatives of the cycle or path in which inputs
R and

7 ��R � are so that they are colored with same color. Every
busy input will find its representative by pointer jumping[5]. If
the sibling of input is idle or the input has no dual input, we know
that the busy input is the end input of a path. For every non-end
busy input, if the dual input of its sibling input is busy, the pointer
is initialized to point to it; otherwise it points to itself. Since the
length of a cycle or a path is at most � , for each busy input, ������
times of pointer jumping are enough to get the information what
its representative is and if it is in a path or cycle.

Step 3: set all busy inputs by their colors.
Two different representatives of a cycle or a path are colored with
two different colors. Since two representatives of a cycle are sib-
ling inputs, we can color every busy input in a cycle by the parity
of its representative. In an odd path, the number of edges with the
color of the primary representative is one more than the number
of edges with color of the non-primary representative. In order to
connect no more than half busy inputs with the same subnetwork
of next level, we color all representatives first so that the differ-
ence of number of primary representatives with different colors is
at most H . Then, we color all busy inputs according to their rep-
resentatives. Before coloring the representatives, each busy input
needs to find another representative of cycle or path in which it
is. If neither of the sibling or dual input of a busy input is busy,
this busy input is in a path with length ' H . In this case, two rep-
resentatives are same. Otherwise, the busy input can find another
representative by its sibling input or dual input. If two representa-
tives are identical or they are in two SEs with different types, i.e.
one in a busy SE and another in a semi-busy SE, this busy input
knows it is in an odd path and in an even path otherwise. For all
busy inputs in odd paths, we mark those inputs with labels same
as primary representatives and perform parallel prefix sum to give
each of them a unique rank. In order to set the input with mini-
mum label of each subnetworks straight, we check if it is among
those marked inputs. If yes, we color all marked inputs with same
parity as it’s as red, and others as blue. Otherwise, all marked
inputs(i.e. primary representatives) with different parity of rank

gets different colors. The non-primary representative can be col-
ored with different color as the corresponding primary represen-
tative. Similarly, all representatives of even paths can be colored,
as we can mark all busy inputs with the smaller one between two
representatives and perform parallel prefix sum on them. Finally,
color remaining busy inputs as the same colors as their represen-
tatives. We set the busy input with even label and red color or that
with odd label and blue color as straight, and as cross otherwise.
It is easy to see that the difference of number of busy inputs con-
nected to different subnetworks of next level is at most H . Thus
the number of busy inputs connected to the same subnetwork of
next level is reduced by half after each iteration.
Step 4: reassign mapping � ��R � for each input R in next stage.
After finishing setting of all inputs in the stage � , the input R of
the stage � is connected to one of inputs �)) �9	%$�)!� � Y �U�) ' ��R
mod 	%$�) � �P$�)d�9	%$�) � E �XR $N��	%$�) � � �]� of stage � �QH according to
the setting of input R , i.e. if R is even and is set straight or R is odd
and is set cross, input R of stage � is connected to input

)
of stage

� � H , otherwise input R of stage � is connected input
) �9	%$�) � � Y

of stage � � H . Thus each � �/V gets the values of � ��R � for setting
of busy input R of next stage in the next iteration.

Our algorithm in PHASE II is presented in such a way that
all PEs participate routing process for P2 of

� ��	! "
#� . Actually,
once the setting of SEs in P1 is determined, cells can be injected
into

� ��	! "
#� . When the cells reach P2, the SEs can determine its
setting by inspecting the control bits of SEs.

We need ���������	�� time to find the number of busy inputs
by performing prefix sums. Since the length of cycle or path is at
most � , we need ����������9� time to perform pointer jumping, pre-
fix sums and sorting in first ������ iterations. Because the number
of busy inputs connecting to the same subnetwork of next level
is reduced by half after each iteration, each iteration in PHASE I
only takes ���PHJ� time after ����������9� iterations. Thus, the total
time for PHASE I is �������� ���5������ 	�� . There are) ���� 	 G 4
iterations in PHASE II, each takes ���PHJ� time. Therefore, the total
time complexity of algorithm ROUTE is �������� ���5� �����	�� .

In summary, we have the following claim:

Theorem 3 For any legal I/G mapping �� � , algorithm ROUTE
correctly computes a feasible configuration of

� ��	! "
#� in
������������B������ 	�� time on a parallel completely connected com-
puter or the EREW PRAM model using 	 PEs.

Example 1 Figure 4 and the following discussion(in this exam-
ple, if some value of an input does not exist, it is set as -1) show
main idea of parallel algorithm ROUTE to set up busy inputs in
the first stage of

� �PH&�F � � for a legal I/G mapping� R�� 2 H)�$ ��� ��� #��!H 2 H�H<H]) H&$IH � H �
� ��R � �)LG?H<G?H�H) 2<2 $ $ 2 H) $ 2 G?H)��

By INITIAL PHASE, the total number of busy inputs is
computed, which is equal to H&$. In step 1 of PHASE 1, every
busy input gets its rank ���R � by parallel integer sorting as follows:� R � 2 H)�$ �	� �
� #�� H 2 H�H<H]) H�$BH � H �

���R � ��� G?H%G?H � � 2 H�H 2 H�H) � #5H]) $5G?H���
And, two busy inputs stored in a pair of sibling PEs are

paired as dual inputs:� � � V � 2 H) $ ��� ��� #��5H 2 H�H�HJ)
R
������ � � ��� H&$ $5H 2<2�� H�HAH � � # HJ)

$���� � R
������ � � � H�$�� H 2 $ ��2 H � H�H #�� G?H��

2

3
1

2

0

1

1

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1

2

3

0

C :

P :

0

2

0

38
9
12

13

10

11

15

(b)

4

6

5

7

4

5

6

7

9

8

10

11

13

12

15

P :

P :

1

0 2

3

0

0

4

5

6

7

3

0

2

3

1

0

1

2

3

0

3

5

4

6

7

(a)

INPUTS OUTPUT GROUPS

(c)

Upper 1-level Subnetwork

Lower 1-level Subnetwork

Figure 4: Setting up SEs by parallel algorithm ROUTE: (a)
Graph model �� for a legal mapping of

� �PH&�F � � ; (b) 2-coloring
of paths and cycle(each edge is labeled by its input number); (c)
setting up SEs in the first stage of

� �PH��� � � .

In the step 2, each input R finds its representative
7 ��R � by

pointer jumping:� R�� 2 H)�$ ��� ��� # � H 2 H�H%HJ)LH&$IH � H �7 ��R � � 2 G?H<G?H $ � 2 � 2 # � H � H�H � #5G?H<H � �
In step 3, every path and cycle finds its two representatives7 ��R � and
7 ; ��R � . So � 2� 1�dY["S 2 and � � find pairs of � 7 ��R � 7 ; ��R �P�

as � 2 �N� \�
$� $N� [�
#F �,� and �PH � ZH�H]� respectively. Color represen-
tatives of cycle S 2 , inputs # and � , by its parity as red and blue.
The primary representatives of the odd paths �2� �dY and � � , in-
puts

2
, $ and H � , are alternately colored with red, blue and red.

Thus all busy inputs of input SEs in
� �PH&�F � � can be colored as

their representatives in figure 4 (b) and set up as figure 4 (c).
In the step 4, two new mappings are given to inputs of input

SEs in two subnetworks of next level as follows:� R � 2 H) $ ��� ���
� ��R � �)%G?H 2 $ $ H 2) �

and� R � # � H 2 H�H%HJ)LH&$!H � H �
� ��R � �#G?H�H) 2 2) $5G?H��

5 Generalizations and Concluding Remarks

The parallel machine models we used are not realistic. How-
ever, our algorithm can be converted to fit any realistic machine
model. A parallel operation involving interprocessor communi-
cation can be achieved by sorting. Let �� ��	�� be the time for
sorting 	 elements on a parallel machine a with 	 processors.
Then, as the algorithm for routing in Benes network D%��	�� of
[12], our algorithm can be implemented on a machine with 	
PEs in no more than �������� � � E �� ��	�� � �����	 E ��d��	��P� run-
ning time where there are ��������>�9� busy inputs. For example,
when implemented on parallel computers whose PEs are con-
nected by perfect shuffle and hypercube networks, our algorithm
takes �������� � �8����������:E\�����	�� time.

Also, it is not difficult to see that the proposed par-
allel algorithm for

� ��	� K
&� always set the SEs indexed by
� 2 \E]E\E\ \��	A$�)!� � Y ���) � , where

2 3 � 3 �����	 G) and) � � 2]E\E\E\ K) � GIH � , in the � -th stage to the straight state. Thus,
these SEs can be eliminated. So the hardware redundancy in first
���� 	 G H stages is

� � ��� ^ . �V���2) V ')�+�. Y G H6' 	%$�)LG H .
Translated into crossing points, the number of saved crossing
points in Benes group connector

� ��	� 	%$�),0�� is increased to
)�	 E 4 ��)�	 G �

, compared with the 	���	 Benes network.
For Example 1, we can reduce H��*)>� � ' � SEs in the first $
stages. Comparing with the Figure 2(c), the Benes group connec-
tor in Figure 3 has much lower hardware cost. Thus, when

4 ' 2
in which case

� ��	! "
#� is the 	 ��	 Benes network D%��	�� , the
hardware redundancy achieved by our algorithm is the same as
the number given in [15].

To our knowledge, all known algorithms for setting up
Benes networks DL��	�� cannot be directly applied to set up Benes
group connectors. However, our algorithm for

� ��	� K
&� can be di-
rectly applied to set up Benes network DL��	�� by selecting
 ' 	 .

References

[1] V.E. Benes, On rearrangeable three-stage connecting networks, Bell System
Technical Journal, vol.41, no.5, pp.1481-1492, September 1962.

[2] V.E. Benes, Mathematical theory of connecting networks and telephone traf-
fic, Academic Press, 1965.

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Elsevier
North-Holland, 1976.

[4] R. Cole, Parallel Merge Sort, SIAM Journal on Computing, vol.17, no.4,
pp.770-785, Aug. 1988.

[5] J. Jaja, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[6] Ching-Yi Lee, A. Yavuz Oruc, A fast parallel algorithm for routing unicast
assignments in Benes networks, IEEE Trans. on Paral. and Distr. Systems,
vol.6, no.3, pp.329-334, March 1995.

[7] K.Y. Lee, A New Benes Network Control Algorithm, IEEE Trans. Comput-
ers, vol.36, no.6, pp.768-772, June 1987.

[8] K.Y. Lee, On the rearrangeability of a (��� ���
	���) stage permutation
network, IEEE Trans. Computers, vol.34, no.5, pp.412-425, May 1985.

[9] T.T. Lee and S.Y. Liew, Parallel routing algorithms in Benes-Clos networks,
INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE Computer So-
cieties. Networking the Next Generation., Proceedings IEEE, vol.1, pp.279-
286, March 1996.

[10] F.T. Leighton, Introduction to parallel algorithms and architectures: Ar-
rays.Trees.Hypercubers, M. Kaufmann Publishers, 1992.

[11] G.F. Lev, N. Pippenger and L.G. Valiant, A fast parallel algorithm for rout-
ing in permutation networks, IEEE Trans. Comput. , vol.30, pp.93-100, Feb.
1981.

[12] N. Nassimi and S. Sahni, Parallel Algorithms to Set up the Benes Permutation
Network, IEEE Trans. Computers, vol.31, no.2, pp.148-154, Feb. 1982.

[13] D.C. Opferman and N.T. Tsao-Wu, On a Class of Rearrangeable Switch-
ing Networks, Part I: Control Algorithm, Bell System Technical J., vol.50,
pp.1,579-1,600, 1971.

[14] J.H. Patel, Processor-memoryInterconnectionsfor Multiprocessors, Proc. 6th
Ann. Symp. Comput. Architecture, pp.168-177, Apr. 1979.

[15] A. Waksman, A permutation Network, J. ACM, vol.15, no.1, pp.159-163,Jan.
1968.

[16] M. Yang and S.Q. Zheng, The kDDR scheduling algorithms for multi-server
packet switches, to appear in Proc. of the ISCA 15th InternationalConference
on Parallel and Distributed Computing Systems, 2002.

[17] M. Yang and S.Q. Zheng, Efficient scheduling for CIOQ switches with space-
division multiplexing and grouped inputs/outputs, submitted for publication.

[18] Y. Yang, S.Q. Zheng, D. Verchere, Group switching for DWDM networks,
submitted for publication.

[19] S.Q. Zheng and Y. Xiong, Ingress edge router architecture and related channel
scheduling algorithms for OBS networks, Alcatel internal technical report,
2000.

[20] S.Q. Zheng, M. Yang, and F. Masetti, Hardware scheduling in high-speed,
high-capacity IP routers, in this proceeding.

