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ABSTRACT

Given a number a with 0 < o < 1,agraph G = (V, E)
and two nodes s and ¢ in G, we consider the problem
of finding two disjoint paths P; and P, from s to ¢ such
that length(P1) + « - length(Py) with length(Py) >
length(P2) is minimized. The paths may be node-disjoint
or edge-disjoint, and the network may be directed or undi-
rected. This problem has applications in reliable com-
munication. We show that all four versions of this prob-
lem are NP-complete. Then we give an approximation of
Hia, and show that this bound is best possible for directed
graphs. For acyclic directed graphs, we also give a pseudo-
polynomial-time algorithm for finding optimal solutions.

KEY WORDS
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NP-complete, approximation

1 Introduction

A reliable telecommunication network, which is modeled
by a graph G = (V, E), is designed in such a way that
multiple connections exist between every pair of commu-
nicating nodes. Usually, paths are selected according to
an objective function. Each edge e in G is assigned a non-
negative length /(e), which reflects the resource and/or per-
formance associated with the edge, such as cost, distance,
latency, etc. The length /(P) of a path P is defined as the
sum of the lengths of its edges. To avoid single point of fail-
ure, the paths may be node-disjointor edge disjoint, and the
network may be directed or undirected. Thus, a problem of
finding disjoint paths have four versions.

Various problems of finding optimized disjoint paths
between two nodes s and ¢ in G have been investigated.
Ford and Fulkson gave gave a polynomial-time algorithm
for finding two paths with minimum total length (called
MIN-MAX 2-Path Problem), using the algorithm of find-
ing minimum weighted network flows [7]. Suurballe and
Tarjan provided different treatment, and presented algo-
rithms that are more efficient [18] [19]. Li et al. proved
that all four versions of the problem of finding two dis-
joint paths such that the length of the longer path is mini-
mized (called the MIN-MAX 2-Path Problem) are strongly
NP-complete [9]. They also considered a generalized MIN-
SUM problem (which we call the G-MIN-SUM k-Path
Problem) assuming that each edge is associated with % dif-
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ferent lengths. The objective of this problem is to find &
disjoint paths such that the total length of the paths is mini-
mized, where the jth edge-length is associated with the jth
path. They showed that all four versions of the G-MIN-
SUM k-path problem are strongly NP-complete even for
k = 2[10].

In [12], we considered the problem of finding two dis-
joint paths such that the length of the shorter path is mini-
mized (named the MIN-MIN 2-path problem). We showed
that all four versions of the MIN-MIN 2-path problem are
strongly NP-complete[12]. In the same paper, we also
showed there does not exist any polynomial-time approxi-
mation algorithm with a constant approximation bound for
any of these four versions of the MIN-MIN 2-path problem
unless P = N P. In this paper we consider a generalized
weighted 2-path problem. Let P; and P be two disjoint
paths from s to ¢ in a given graph G, and « a non-negative
value. Define

La(Pl,Pz) = Z(Pl) + a - Z(Pz)

Our objective is to find two disjoint paths P; and P, such
that L, (P1, P2) is minimized. Graph G' may be directed
or undirected, and the paths may be node-disjoint or edge-
disjoint. We call this problem the a-MIN-SUM 2-path
problem. According to the relative values of P, and Ps,
this problem can be treated as having two versions. One is
to minimize

LQ— (Pl, Pz) = max{l(Pl), l(PQ)}-FCEHHH{l(Pﬂ, Z(Pz)},

and the other is to minimize

LQ+ (Pl, Pz) = mm{l(Pl), l(Pz)}+Ot-IH&X{l(P1), Z(Pg)}

We name the former as the a~-MIN-SUM 2-path
problem, and the latter as the a*-MIN-SUM 2-path prob-
lem. It is clear that if « = 0, the a~-MIN-SUM 2-path
problem, and the at-MIN-SUM 2-path problem degener-
ates to the MIN-MAX 2-path problem and MIN-MIN 2-
path problem, respectively, which are NP-complete for all
four versions. But if o = 1, both degenerate to the MIN-
SUM 2-path problem, which is polynomial-time solvable.
Investigation on the a-MIN-SUM 2-path problem is of the-
oretical interest: what are the computational complexities
of the a-MIN-SUM 2-path problem with0 < o < 1?
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an a-MIN-SUM problem with o« > 1 can be transformed
into a problem with o < 1. Hence, it is sufficient to only
consider the problem with 0 < o < 1. We call the o~ -
MIN-SUM 2-path problem (resp. at-MIN-SUM 2-path
problem) with 0 < a < 1 the normalized a~-MIN-SUM
2-path problem (resp. normalized at-MIN-SUM 2-path
problem). The relationship among these 2-path problems
is shown in Figure 1.

a=0 MIN-MAX
<=1
a-MIN-SUM 2 normalized o "-MIN-SUM /
a>=1 =y
MIN-SUM
a>=1 y
a*MIN-SUM normalized o -MIN-SUM
<=1
a TS0~ MIN-MIN

Figure 1. Relations among various 2-path problems.

In this paper, we consider normalized o~ -MIN-SUM
2-path problem with 0 < o < 1. As indicated in Figure 1,
the algorithmic issues related to the a~-MIN-SUM 2-path
problem with o« > 1 have to be addressed by consider-
ing the normalized a*-MIN-SUM 2-path problem. Read-
ers should bear in mind that the conclusions on the gen-
eral a~-MIN-SUM 2-path problem and o~ -MIN-SUM 2-
path problem can be drawn from the combination of the
results on normalized o~ -MIN-SUM 2-path problem and
normalized at-MIN-SUM 2-path problem. We would like
to mention that our results on the normalized a*-MIN-
SUM 2-path problem are reported in [13]. It turns out that
the properties of these two normalized 2-path problems are
quite different.

Apart from its theoretical interest, this « ~-MIN-SUM
2-path problem has important applications in survival net-
work design. In many real-world network applications,
there requires to provide two disjoint (node-disjoint or
edge-disjoint) paths between two nodes to guarantee reli-
ability. One is called primary route and the other is called
a secondary route. In case there is a failure on the pri-
mary route, the traffic can be quickly switched to the sec-
ondary route. To build a path, the service provider normally
charges a fee proportional to the length of the path. The
service provider sometimes will give price discount to the
shorter path, as « times the normal price. There are simi-
lar cases in other areas, like retail business. For example,
a shoe store will have “buy one and get 2nd one with 50%
off” policy for business promotion. The one with 50% off
has to have smaller or equal value as the other one.

In this paper, we first show that all four versions
of the normalized a~-MIN-SUM 2-path problem are NP-
complete. We show that using MIN-SUM 2-path so-
lutions to approximate normalized «~-MIN-SUM solu-
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tions achieves an approximation bound =. Then, we

prove that for directed graphs there does not exist any
polynomial-time approximation algorithm guaranteeing an
approximation bound smaller than ﬁ unless P = NP.
Finally, give pseudo-polynomial-time algorithms for find-
ing optimal disjoint paths in acyclic directed graphs.

2 NP-Completeness

Two paths are said to be edge-disjoint in G = (V, E) if
they have no edge in common, while they are said to be
node-disjoint if they have no intermediate node in com-
mon. Clearly, node-disjoint paths are also edge-disjoint,
but the converse is not true. There are four versions of the
normalized o~ -MIN-SUM 2-path problem:

¢ node-disjoint paths in directed graphs (ND-D 2-path
problem);

o edge-disjoint paths in directed graphs (ED-D 2-path
problem);

¢ node-disjoint paths in undirected graphs (ND-UD 2-
path problem);

¢ edge-disjoint paths in undirected graphs (ED-UD 2-
path problem).

All graphs considered in this paper are simple graphs,
i.e. graphs without self-loops and parallel edges between
any pair of nodes. We show that all these versions are NP-
complete by reducing the partition problem ([1]) to the de-
cision problem corresponding to the normalized o~ -MIN-
SUM 2-path problem.

2.1 Edge-Digoint Pathsin Directed Graphs

The Partition Problem is defined as following ([8]):
INSTANCE: A set of integers: C' = {c1,c¢a, -+ ,¢n}-
QUESTION: Is there asubset 7 C N = {1,---,n}

such that

Zci: Z c 7

iel 1EN-T

The partition problem is a well-known NP-complete
problem[1]. We prove that the ED-D version of the nor-
malized o~ -MIN-SUM 2-path problem is NP-complete by
reducing the partition problem to it. Let J = N — [.
We use (C(1),C(J)) to denote a partition of C', where
C1) = {eili € I} and C(J) = {e;]j € J}.

For a partion problem instance {c1,ca, -, ¢}, We
construct a direct graph G(C') in a way shown in Figure 2.

We call a section corresponding to ¢;, shown in Figure
3, a block and denote it by B;.

Lemmal Any two edge-disjoint paths from s to ¢ in G(C')
define a unique partition of C.
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Figure 3. Block B;

Proof: In G(C'), any two edge-disjoint paths going through
a block B; must be in only one of the two cases shown in
Figure 4. Thus, one and only one edge with cost ¢; is used
in the two paths. Count the non-zero edges used in each
path, we obtain a partition of {¢1,¢ca,- - ,cn}. [ ]
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Figure 4. Edge-disjoint paths to go through block B;.

Lemma2 Any partition (C(T), C'(J)) of {e1,¢ca, -, en}
defines two unique edge-disjoint paths P; and P> from s
to ¢ in G(C) such that [(Py) = " ccpyci and [(Pz) =

Zc]-eC(J) -

Proof: Given (C'(I),C(J)) of C, we construct P; and P,
corresponding to C'(7) and C(.7), respectively, as follows.
In Figures, P, is represented by dashed edges, and Ps by
dotted edges.

The edges from s to B; are shown in Figure 5, with
Figure 5 (a) and (b) correspondingto ¢y € C'(7) and ¢; €
C'(.J), respectively.

If ¢; € C(I), i > 1, we have four cases, as shown
in Figure 6 (a), (b), (9) and (h), depending on if ¢;41 isin
C(I)ornot. If¢; € C(J), 1 > 1, we have four cases, as
shown in Figure 6 (c), (d), (e) and (f), depending on if ¢; 41
is in C(I) or not. Clearly, these include all possible cases.

As an example, Figure 7 shows two edge-disjoint
paths constructed from G(C) of C' = {c¢1,¢2,¢3, ¢4, ¢35},
C(I) = {Cl, c3, 64} and C(J) = {Cz, 65}.

This way, we get two unique edge-disjoint paths P;
and P, such that [(P) = > . coqyei and [(P2) =

Yo ec() Cit u

0 0 0
~ A e
\ s Q 0/}’-_01
0 \\O—»O—» 0 \\é—>b -
@ o @ o
@ (b)

Figure 5. Two paths: (a) ¢c; € C(I), and (b) ¢; € C(J).
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Figure 6. Cases for the proof of Lemma 2.

Figure 7. An example.



We define the two paths constructed by the method in
the proof of Lemma 2 as partition defined 2 paths.

Lemma3 For the graph G(C) constructed from any par-
tition instance C' = {cy,c¢a, -+ ,cpjWith D = ZZ.EN Ci\
the normalized o~ -MIN-SUM 2-path problem has the op-
timal value HTO‘ - D if and only if the partition problem has
a feasible solution.

Proof: The proof consists of two parts.

Part I: We show that if the partition problem for
C has a feasible solution, then the corresponding graph
G(C) has two edge-disjoint paths with normalized o~ -
MIN-SUM cost HT“ - D. Let the feasible partition be
C(l)and C(J). Then 3=, oy € = D ecq) € From
Lemma 2, we can find 2 edge-disjoint paths P; and P cor-
responds to 7 and N — I with [(P) = {(P,) = 2. Then
[(P) 4o l(Py) =42 D.

We show that £2 . D is the normalized a~-MIN-
SUM cost. Let P/ and P; be any two edge-disjoint paths
in G(C). From the proof in Lemma 1 we have, {(P]) +

I(Py) = D. Assume [(P]) > [(P}), then¢é = I(P]) —
[(P5)>0.S0 P{ = 240 pi = D=3 Hence ((P{) +a -
[(P3) = 142 . D + 152 . §, which achieves its minimum
value 142 . D até = 0.

Part 11: We show that if G(C) has two edge-disjoint
paths with normalized o~ -MIN-SUM cost HTO‘ - D then
there is a feasible solution for C'. Let P; and P be two
disjoint paths in G/(C) such that {[(Py) > [(P»). Then, it
requires {(P1) = [(P2) = £ tomake [(P;) + o - I(P) to
achieve its minimum value ”TC‘ - D. If such two paths exist
in G(C), we can use the method of Lemma 1 to map P;
and P to sets C'() and C'(J) to obtain a a partition with

e . _ D

iec(n) G = 2jec(n) G = 3 u

Theorem 1 The ED-D version of the normalized o~ -MIN-
SUM 2-path problem is NP-complete.

Proof: Obviously, this problem belong to the NP class.
Lemmas 1-3 show that the partition problem is polynomial-
time reducible to edge-disjoint, directed o~ -MIN-SUM 2-
path problem.

[ |

Corollary 1 The ND-D, ED-UD and ND-UD versions of
the normalized a~-MIN-SUM 2-path problem are NP-
complete.

Proof: Since paths used in the proof of previous lemmas
are also node-disjoint, the node-disjoint normalized o~ -
MIN-SUM 2-path problem for directed graphs is also NP-
complete. Since the proofs of the previous lemmas also ap-
ply undirected graph G'(C'), edge-disjoint and node-disjoint
normalized a~-MIN-SUM 2-path problem for undirected
graphs are also NP-complete. ]

How about special graphs? The following result indi-
cates that the normalized a~-MIN-SUM 2-path problem is
not easier if graphs are restricted to planar graphs.

Corollary 2 All four versions of the normalized a—-MIN-
SUM 2-path problem on planar graphs are NP-complete.

Proof: The theorem follows from the fact that graph G(C)
is planar. ]

3 Approximation Analysis

We say that an instance of the normalized o~ -MIN-SUM
2-path problem is feasible if for which a feasible solution
exists. We say that there exists an approximation algorithm
with bounded (worst-case) error for the normalized o~ -
MIN-SUM 2-path problem II if there exists a polynomial-
time algorithm .4 such that for the feasible instance space
7ofII

Z(Pl) + a - Z(Pz)
I(Pf) + - 1(P5)

< E, @)

where (Py, P;) is the solution produced by algorithm A,
(Pf, PJ) is an optimal solution, and E' is a constant. The
next theorem shows that all four versions of the normalized
a~ -MIN-SUM 2-path problem are approximatable.

Theorem 2 For all four versions of the normalized o~ -
MIN-SUM 2-path problem, there exists a polynomial-time
approximation algorithm with error bound 3.

Proof: Let P, and P, {(P1) > [(P2), be the opti-
mal solution of the MIN-SUM 2-path problem, which

is polynomial-time solvable [7] [18]). We show that
(P )tol(Py) 2

(P ¥al(P]) = T4a"
As (Py, Py) is an optimal solution for MIN-SUM 2-
path problem,
[(Pr) +1(P2) <U(PT) +U(Ps).
Andas[(P]) > I(P5),
L(PL) +1(P2) <U(PT) +U(Py) <2-1(PF).

Then,

v
=R Q2
R
=
a
e

Hence,

U(Py)+a-l(P3)
(P} )+ol(P?)
1(P1)+1(Ps
WP ) +al(P7)
{(P1)+{(P2) 1 2

HE (P +(P)) T HE T 14a

IA A

[ |
We now establish the tightness of our approximation
bound.



Theorem 3 With respect to using a MIN-SUM 2-path solu-
tion to approximate a normalized o~ -MIN-SUM solution,
the error bound = for all four versions of the normalized

a~ -MIN-SUM 2-path problem is tight.

Proof: Let P, Py, Py and P be defined the same way as
in the proof of Theorem 2. Consider the graph shown in
Figure 8(a). For this graph, the optimal MIN-SUM solu-
tion and the optimal o~ -MIN-SUM solution are shown in
Figure 8(b) and (c), respectively.
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Figure 8. An example.

Clearly,
I(Py)+al(Ps)
(P} )+o-l(Ps
_ R
(1+a) (B +2)
- (as M approaching co).

Hence, the error bound HLQ is tight for the two (edge-
disjoint and node-disjoint) directed versions. Obviously,
this example can be used the two undirected versions. ®

Theorem 3 states that using optimal MIN-SUM so-
lutions to approximate optimal «~-MIN-SUM solutions,
H% is the best possible error bound. A question arises:
Is there any polynomial-time approximation algorithm for
the normalized o~ -MIN-SUM with a smaller error bound?
The following theorem partially answers this question.

Theorem 4 For the two directed versions of the nor-
malized a~-MIN-SUM 2-path problem, if there exists a
polynomial-time approximation algorithm with an error

bound smaller than HLO( then P = NP.

Proof: We use the same technique Li used in [9] - the
polynomial-time reduction from the 2DP problem. The
2DP problem asks if there exists two paths from nodes
s1, so tonodes ¢y, ¢, ina given directed graph G. The prob-
lem was proven NP-complete by Fortune, Hopcroft and
Wyllie in [11]. The polynomial-time reduction is carried
out as follows. For G = (V, E) and four distinct nodes
s1, 82,11, to, Create a new graph G/ = (V', E’) with
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1. setV' =V U{s,t},
2. SetE’:EU{5—>51,3—>52,t1 —)t,tz—)t},and

3. length 1 assigned to edges s — s; and t; — ¢, and
length 0 assigned to s — sq, t1 — ¢ and all edges in
E.

Figure 9 shows a general graph G and its correspond-
ing G'.

@ (b)

Figure 9. (a) Graph GG. (b) Graph G".

Then the question of “whether or not there exist two
disjoint paths from s; to¢; and s, to ¢, in G” is equivalent
to the question of “whether or not there exist two disjoint
paths (Py, P») fromstot in G’ with z = [( Py )+a-l(P2) <
1+ a”. That is because any two disjoint paths from s to ¢
in G’ include edges s — s1,5 — s3,t1 — t,t5 — t. Thus,
either s — s; and¢t; — ¢ (resp. s — s; and 2 — t) are
in the same path, or s — s; and ¢ — ¢ (resp. s — s and
t; — t) are in the same path. In the former case, z = 1+«
and there exist two disjoint paths from s; to ¢; and s, to ¢5.
In the latter case, = = 2 and there exist disjoint paths from
s1 to t5 and s, to ¢;. Let (P}, Py) be the optimal paths
for the normalized o~ -MIN-SUM 2-path problem on G’.
Then, we have

z=l(P)+a-l(P)€e{l+a,2}
= { =P +a-I(P)€{l+a,2)

Suppose that there is a polynomial-time approximation al-
gorithm A with error bound smaller than . Then algo-
rithm A4 can find (P, P») in G’ such that

* * < ’
P+ a-l(P}) 1+«

which leads to

2
=1 . =2 =1 .
(=l4a)s (< =)= (=140

Then this algorithm can answer the question of “whether or
not there exist two disjoint paths (Py, P») from s to ¢ with
z=1l(P))+a-l(P) <1+a”. Weare led to conclude that
algorithm A can solve 2DP problem in polynomial time. It
cannot be true unless P = N P. [ |



4 Pseudo-Polynomial-Time Algorithm for
Acyclic Directed Graphs

For the special case a~-MIN-SUM 2-path problem on
acyclic directed graphs, there exists a pseudo-polynomial-
time algorithm to find optimal solutions. The algorithm
is obtained by extending the Li’s algorithm [9] to find two
disjoint paths on acyclic directed graphs for MIN-MAX ob-
jectiveh.

4.1 TheNode-Digoint Case

For this case, we adopt a technique used in a pseudo-
polynomial-time algorithm of [9]. Given an acyclic di-
rected graph G = (V, E') and source s and destination ¢,
we can relabel nodes with number 1 to |V| to ensure that
any edge u — v in F satisfiesu < v, s = landt = |V|
[15] (it is assumed that s — ¢ ¢ E'; otherwise we can add
anode u and replace s — ¢t by s — w and u — t). After
relabeling, we transform graph G into an acyclic directed
graph G = (V, E), whose nodes are arranged as a | V| - | V|
array, as follows:

V= {{(u,v)|lu,v € V,andu # vunlessu = v = s
oru=v= t}

E={{(u,v) = (u,w)|v - w € Eand v < u}

U{(v,u) = (w,u)|v - w e Fand v < u}

Then we assign the lengths to edges in G as follows:

({u,v) = {(u,w)) = a - l(v = w), and

I({v,u) = (w,u)) = (v = w).

Figure 10 shows an example of G and its correspond-
ing G.

Figure 10. (a) An acyclic graph G. (b) Graph G.

We call z and y of a node (z,y) in G the first
and second label of the node, respectively. Given a path
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P = (up,v1) — (uz,va) = - = (Up,vy) from
(1,1) to (|V],|V]) in G, let H(P) and V(P) be the set
of horizontal and vertical edges in P respectively. De-
fine Vi(P) = (wi1,uia, - ,uix) (resp. Va(P) =
(vj1,u52, -, u;jx)) as the sequence of distinct first
(resp. second) labels of nodes in V(P) (resp. H(P)).
By a straightforward extension of the results of [15], we
know that there exist two node-disjoint paths P; = u; ; —
U2 —> - —> Uik and Py, = Vi1 —> Vi2 — - —> Uik
from s to ¢ (from 1 to |V/| after relabeling) in G if and only
if there exists a path P from (1,1) to {|V|,|V|) such that
V1(F) =Ujl > U2 Uk and VQ(F) =vi1 —
via — --- — v; . Thatis, Py and Py correspond to the
vertical edges and horizontal edges in P, respectively. In
the example of Figure 10(a), there are two node-disjoint
paths P, =1 54— 5—>6and P, =1 32— 3> 6in
G. The corresponding path in G is P = (1,1) — (4, 1) —
(4,2) = (4,3) = (4,6) — (5,6) — (6,6), as shown in
Figure 10(b).
Then our goal is to find P such that

{v(P)+ H(P)}

min
PeG

V(P)>H(P)

We use the similar *“scanning and labeling”
algorithm[9] to keep multiple labels at each node.
The labels for a node are represented by (z,y,< p,q >),
where z and y are the total vertical and horizontal distances
from < s, s > to the current node along the path through
previous node < p,q >. Different from [9], we use an
array index by z to store these labels, and the size of the
array is L =3 . c g L(€). The algorithm is as follows:

label < s, s > with (1,1, —);
forp=s,---,tdo
forg==s,---,tdo
for each node v adjacent to < p, ¢ > do

letd =1(< p,q >—> v);

if < p,q>— visavertical edge then

update label (z + ¢, y,< p,q >) on v;

if < p,q >— visahorizontal edge then

update label (z,y + d,< p,q >) on v;

(label update procedure: given new label (z, y, <
p,q >), if there is no existing label in the z el-
ement of the label array, add (z,y,< p,q >)
into the array as the = element; if there exists a
(z,y*, < p*,q" >) in the x element, replace the
element with (z,y, < p,q >) ify < y*).

if < t,¢ > has no label then stop (no path P exists in G);
else select a label (z,y, < p,q >) that max(z,y) + o -
min(z, y) is minimized; trace the path back to < s, s > to
get the optimal path P.

From the proof in [9], the above algorithm covers all
valid non-redundant paths from < s, s >to < ¢,¢ >. Thus,
the P is the optimal path.



Complexity Analysis:

Let L be sum of all edge lengths in G. The scan-
ning stage takes O(|V|?) time, as there are |V | nodes and
each node has at most 2|V| neighbors. The update proce-
dure takes constant time. The final optimization stage takes
O(L) time. So the total time complexity is O(|V|? + L).
And the algorithm takes O(|V'|L) space.

4.2 TheEdge-Digoint Case

For this case, we directly apply a technique of [9] that trans-
forms the acyclic edge-disjoint case to the acyclic node-
disjoint case, and then apply the algorithm presented in
the previous section. First, we transform the given graph
G = (V, E) to a corresponding directed line-graph G [2],
which contains O(| E|) nodes and O(|V]) edges. This can
be done in O(|E|) time. Then, finding two node-disjoint
paths in G can be done in O(|E|® + L) time. For more
details, refer to [9].

5 Concluding Remarks

We have shown that for all four versions of the normal-
ized o~ -MIN-SUM 2-path problem one cannot obtain
polynomial-time algorithms for finding optimal solutions,
unless P = NP. We showed that MIN-SUM solutions can be
used as good approximations of optimal normalized o~ -
MIN-SUM solutions. We also showed that for acyclic di-
rected case, pseudo-polynomial-time algorithms exist for
finding optimal normalized a«~-MIN-SUM solutions. We
showed that Hia is the best possible approximation bound
for normalized o~ -MIN-SUM solutions in directed graphs.
A challenging question is if % is also the optimal ap-
proximation bound for undirected graphs. Polynomial-time
algorithms may exist for finding optimal normalized o~ -
MIN-SUM 2-path solutions or achieving smaller approxi-
mation bound for graphs of some special properties.
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