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Abstract— Applications of stable matching in switch scheduling
have been proposed. However, the classical GS stable matching
algorithm is infeasible for high-speed implementation due to
its high complexity. Instead, acyclic stable matching algorithms
have been shown useful in implementing scheduling for high-
speed switches/routers. In this paper, we model the acyclic stable
matching problem as the dominating set problem for a rooted
dependency graph, and propose a parallel algorithm for finding
the dominating set in O(n log n) time. We design and implement
a scheduler based on the proposed algorithm in hardware.
Simulation results show that the number of 2-input NAND gates
and the timing of our design are proportional to n2 and n
respectively, making it feasible to be implemented at high speed
with current CMOS technologies.

Index Terms— Stable matching, acyclic graph, dependency
graph, dominating set, switch scheduling.

I. INTRODUCTION

The stable marriage problem (or stable matching problem)
was first introduced by Gale and Shapley (GS) in 1962 [1].
Given n men, n women, and 2n ranking lists in which each
person ranks all members of the opposite sex in the order of
preference, a matching is a set of n pairs of man and woman
with each man/woman in exactly one pair. A matching is stable
if there does not exist one man and one woman who are not
matched to each other, but each of whom strictly prefers the
other to his/her current partner in the matching; otherwise,
the matching is unstable. Gale and Shapley showed that every
instance of the stable matching problem admits at least one
stable matching, which can be computed in O(n2) iterations.
The paper [1] sparked much interest in many aspects and
variants of the classical stable matching problem [2].

The solutions to the stable matching problem have been
applied to switch scheduling for packet switches. Many GS
based stable matching scheduling algorithms have been pro-
posed for both input queued (IQ) switches and combined
input and output queued (CIOQ) switches [3]-[10]. In these
algorithms, the man set and the woman set consist of all input
ports and all output ports respectively, and the ranking list for
each input/output is defined differently according to different
performance requirements. For example, McKeown proposed
two scheduling algorithms, GS longest queue first (GS-LQF)
and GS oldest cell first (GS-OCF), with ranking lists based on
the occupancy of the input queues and the waiting time of the

cells at the head of input queues respectively in [4]. GS-LQF
and GS-OCF algorithms were shown to achieve asymptotically
100% throughput under both uniform and non-uniform traffic
for IQ switches.

The scheduling algorithms based on general stable match-
ings, however, are too complex for high-speed implementation.
It turns out that for stable matching instances with acyclic
dependency graphs, finding stable matchings takes less time.
Researchers have proposed several scheduling algorithms for
CIOQ switches based on acyclic stable matchings. In [5],
Prabhakar and McKeown proposed the most urgent cell first
algorithm (MUCFA) for a CIOQ switch with a speedup of
4 to emulate an output queued (OQ) switch performance.
Chuang and Stoica improved the result to a speedup of 2
by the critical cell first (CCF) algorithm [6] and the joined
preferred matching (JPM) algorithm [7] independently. In [8],
Nong et al. proved that with some speedup, an acyclic stable
matching scheduling algorithm can provide QoS guarantees
for both unicast and multicast traffic with fixed-length and
variable-length packets.

The advantage of acyclic stable matching scheduling algo-
rithms is its feasibility for high-speed implementation. How-
ever, there is no hardware design and implementation of
acyclic stable matching scheduling algorithms in the litera-
ture. In this paper, we propose a parallel algorithm for the
acyclic stable matching problem, and present its hardware
implementation. We first model the acyclic stable matching
problem as the dominating set problem for rooted dependency
graphs. We show that the root set and the dominating set of
a rooted dependency graph are identical. We then propose a
parallel algorithm, FIND ROOTS, to find the root set of a
rooted dependency graph in O(n log n) time with n2 simple
processing elements (PEs). We further present hardware design
and implementation of the proposed algorithm. Simulation
results show that the number of 2-input NAND gates and the
timing of our design are proportional to n2 and n respectively.
The proposed design can be used to implement schedulers
based on acyclic stable matching algorithms, such as those in
[5]-[8].

The rest of the paper is organized as follows. In Sec-
tion II, we propose our parallel algorithm FIND ROOTS. In
Section III, we focus on the design and implementation of
FIND ROOTS in hardware. Section IV concludes the paper.
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II. A PARALLEL STABLE MATCHING ALGORITHM FOR

ROOTED DEPENDENCY GRAPH

A. Preliminaries

Let M = {m1,m2, · · · ,mn} and W = {w1, w2, · · · , wn}
be the sets of n men and n women respectively.
Let mRi = {wri,1, wri,2, · · · , wri,n} and wRj =
{mrj,1,mrj,2, · · · ,mrj,n} be the ranking lists for man mi

and woman wj respectively, where wri,j (resp. mrj,i) is the
rank of woman wj (resp. man mi), 1 ≤ i, j ≤ n. That is, if
wri,j = k (resp. mrj,i = k), then woman wj (resp. man mi)
is the kth choice of man mi (resp. woman wj).

Let A be a ranking matrix of size n× n, where each entry
of ai,j of A is a pair of (wri,j ,mrj,i) in which wri,j is the
rank of woman wj in man ranking list mRi and mrj,i is the
rank of man mi in woman ranking list wRj . We call wri,j

(resp. mrj,i) the horizontal value (resp. vertical value) of ai,j ,
and denote it by ah

i,j (resp. av
i,j). Example 1 shows a 4 × 4

ranking matrix obtained from two given ranking lists.
Example 1: An instance of stable matching problem.

Man ranking lists: Woman ranking lists:
mR1 : {3, 4, 1, 2}; wR1 : {3, 2, 1, 4};
mR2 : {1, 2, 3, 4}; wR2 : {1, 4, 3, 2};
mR3 : {1, 2, 4, 3}; wR3 : {1, 2, 3, 4};
mR4 : {2, 3, 1, 4}. wR4 : {3, 2, 1, 4}.

Ranking matrix A:
3,3 4,1 1,1 2,3
1,2 2,4 3,2 4,2
1,1 2,3 4,3 3,1
2,4 3,2 1,4 4,4

Definition 1: Given an n×n ranking matrix A, a set of man-
woman pairs is a matching M if any two pairs (mi1 , wj1) and
(mi2 , wj2) in M are corresponding to two entries ai1,j1 and
ai2,j2 in different rows/columns of A; M is a stable matching
if there does not exist a pair (mi, wj) /∈ M such that ah

i,j <
ah

i,k and av
i,j < av

l,j , where (mi, wk), (ml, wj) ∈ M.
In Example 1, by Definition 1, we know the stable matching

is the set of pairs (1, 3), (2, 4), (3, 1) and (4, 2), whose
corresponding entries in the ranking matrix are marked by
underlines.

B. Dominating Set for Dependency Graph

Given a ranking matrix A, we define the dependency graph
of A as a directed graph �G constructed as follows: every ai,j

of A is represented by a vertex vi,j of �G; there is an edge
from vi,j to vi,k if and only if ah

i,j < ah
i,k; there is an edge

from vi,j to vl,j if and only if av
i,j < av

l,j . A stable matching
instance is acyclic if its corresponding dependency graph does
not contain any cycle. A dominating set of dependency graph
�G is a set of vertices, denoted by Vd, such that the following
two conditions are satisfied: (1) for any two vertices in Vd, they
are corresponding to two entries in different rows/columns of
the ranking matrix; (2) for any vertex v ∈ V (�G) − Vd, there
is a directed edge from a vertex in Vd to v.

Since each vertex vi,j in �G is corresponding to a pair of man
and woman (mi, wj), by the definitions of stable matching and
dominating set, we have the following fact.

Fact 1: Let �G be a dependency graph. Vd is the vertex
subset corresponding to a stable matching if and only if Vd is
a dominating set of �G.

By Fact 1, the problem of finding a stable matching is
reduced to the problem of finding a dominating set. In general,
the dominating set for a dependency graph may not be unique,
and finding one is time consuming. However, we find that
the problem of finding dominating sets for a special class of
dependency graphs, named rooted dependency graphs, is much
easier. A rooted dependency graph is defined recursively as
follows: an empty graph is a rooted dependency graph; a non-
empty dependency graph �G is a rooted dependency graph if (1)
it contains one or more roots, each being a vertex without any
incoming edge; (2) the reduced subgraph, which is obtained
from �G by removing all vertices in the same rows/columns as
the roots and all outgoing edges from these removed vertices,
is also a rooted dependency graph. The root set of a rooted
dependency graph �G is a set that consists of all roots of �G
and its reduced subgraphs recursively generated from �G.

Fact 2: Let �G be the dependency graph of a ranking matrix
A where each entry ai,j = (wri,j ,mrj,i). For any vertex vi,j ,
the number of incoming edges coming from the vertices in
row i is equal to wri,j −1 and the number of incoming edges
coming from the vertices in column j is equal to mrj,i − 1.

By Fact 2, we know that a vertex with corresponding entry
(1, 1) is a root since it has no incoming edge. By Facts 1 and
2, we have the following theorem.

Theorem 1: For a rooted dependency graph �G, the root set
is the same as the dominating set, which is unique for �G.

Example 2: Figure 1 (a) shows the dependency graph �G for
the ranking matrix in Example 1. The horizontal value and
vertical value of each entry in the ranking matrix are shown
in each corresponding vertex. From the figure, clearly, neither
of two vertices v1,3 and v3,1, which are marked as dark circles
in �G, has incoming edge since each of them corresponds to
an entry (1, 1) in the ranking matrix. Hence, �G has two roots,
v1,3 and v3,1. After removing all vertices in rows 1, 3 and
columns 1, 3 and their outgoing edges in �G, we get the reduced
subgraph �G′, which has root v4,2 marked as dark circle in
�G′. After removing all vertices in row 4 and column 2 and
their outgoing edges in �G′, we get the reduced subgraph �G′′,
which contains only one vertex v2,4 that is also a root of �G′′.
By the definition, we know �G is a rooted dependency graph.
It is easy to verify that the root set, {v1,3, v3,1, v4,2, v2,4}, is
the dominating set of �G. By Theorem 1, the dominating set
corresponds to the stable matching of Example 1, which is
{(1, 3), (3, 1), (4, 2), (2, 4)}.

A rooted dependency graph may not be acyclic (i.e. the
graph may have a directed cycle). In Example 2, �G contains a
cycle (v1,1,v4,1,v4,2,v3,2,v2,2,v2,3,v2,4,v1,4) (see Figure 1 (a),
in which edges in the cycle are marked as dark edges).
However, an acyclic graph always has at least one root, and its
reduced subgraph is also acyclic. Thus, we have the following
fact.

Fact 3: An acyclic dependency graph is a rooted depen-
dency graph, but a rooted dependency graph may not be an
acyclic dependency graph.

In the following, we propose a parallel algorithm for finding
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Fig. 1. (a) A rooted dependency graph �G and its reduced subgraph �G′ and �G′′. The roots of �G are v1,3, v3,1. The roots of �G′ and �G′′ are v4,2 and v2,4

respectively. The root set is {v1,3,v3,1,v4,2,v2,4}, and each root is marked as a dark circle. (b) The stable matching is found by GS algorithm in 5 iterations.
In each iteration, new proposals are marked as light lines and the kept proposals are marked as dark lines.

the root set (i.e. the stable matching) in a rooted dependency
graph.

C. The Algorithm

Given a rooted dependency graph �G constructed from an n×
n ranking matrix A, we first find the roots of �G. If the reduced
subgraph �G′ of �G is not empty, we continue to find remaining
vertices in the root set of �G recursively until the total number
of found roots equals to n. The algorithm for finding the root
set of a rooted dependency graph, FIND ROOTS, is described
in the following.

Algorithm FIND ROOTS
begin

G := �G /* �G is the dependency graph */
Vr := ∅ /* Vr is the root set */
while there exists a root in G do

Step 1: find the set of roots V ′
r of G and let Vr := Vr ∪ V ′

r
Step 2: find the reduced subgraph G′ of G and let G := G′

end

Based on Theorem 1 and Fact 1, the set of roots obtained
from FIND ROOT is corresponding to the set of man-woman
pairs in the stable matching. We analyze the time complexity
of FIND ROOTS using n2 PEs as follows. The n2 PEs are
placed as an n×n array, and the n PEs in the same row/column
are fully connected.

Each PEi,j is corresponding to a vertex vi,j of �G and has
a pair of horizontal (h for short) and vertical (v for short)
values set as (wri,j ,mrj,i) initially. Since the total number of
roots in root set of �G is equal to n, FIND ROOTS runs in
at most n iterations. Each iteration of FIND ROOTS consists
of two steps. Based on Fact 2, we know step 1 can be done
in O(1) time by each PEi,j checking if its (h, v) = (1, 1).
Conceptually, step 2 contains 2 substeps. In substep 1, each

root vertex vi,j found in step 1 sets its (h, v) = (0, 0) and
marks all vertices in row i and column j as the vertices to
be deleted. Since all PEs in the same row/column are fully
connected, this substep takes O(1) time. In substep 2, each
undeleted vertex vi,j decreases its h (resp. v) value by k if its
h (resp. v) value is greater than that of k deleted vertices in row
i (resp. column j). Since there are at most n deleted vertices
in each row/column, this substep can be done in O(log n)
time. Therefore, based on the above discussion, we have the
following theorem.

Theorem 2: Given any instance of stable matching problem,
if its corresponding dependency graph is a rooted dependency
graph (including acyclic dependency graph), we can find the
stable matching in O(n log n) time on n2 PEs.

D. Comparison with GS Algorithm

Gale and Shapley proposed an algorithm for solving the
stable matching problem in [1]. The GS algorithm works in
the following way. Each man first proposes to his most favorite
woman; each woman will keep the proposal proposed by the
man who has the highest rank in her ranking list among those
who have proposed to her, and reject all the rest proposals.
Each rejected man then proposes to his next favorite woman
on his ranking list. The GS algorithm will continue this process
until all women get proposals. When GS algorithm stops, each
woman and man whose proposal the woman keeps become
a pair of partners. All pairs of these partners form a stable
matching. GS showed that a stable matching always exists
and can be found in O(n2) iterations. Due to the dependency
in GS algorithm, the number of iterations can not be easily
reduced by parallelism regardless of the number of PEs used.
The running time of parallel GS algorithm is O(n2 log n) time
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Fig. 2. (a) An acyclic dependency graph �G and its reduced subgraph �G′ and �G′′. The roots of �G are v1,1, v3,3. The roots of �G′ and �G′′ are v2,4 and
v4,2 respectively. The root set is {v1,1,v3,3,v2,4,v4,2}, and each root is marked as a dark circle. (b) GS algorithm finds the stable matching in 6 iterations.
In each iteration, the new proposed proposals are marked as light lines and the kept proposals are marked as dark lines.

on n PEs since each iteration takes O(log n) time to find the
minimum from at most n distinct numbers.

For stable matching problems with rooted dependency
graphs, GS algorithm does not work as fast as FIND ROOTS.
As shown in Figure 1, to find the stable matching for Example
1, GS algorithm needs 5 iterations while FIND ROOTS only
needs 3 iterations. This means that O(n) iterations are not
sufficient for GS algorithm to find the stable matching for
rooted dependency graphs. Furthermore, O(n) iterations are
not sufficient for GS algorithm to find the stable matching for
acyclic dependency graphs. Figure 2 shows an example of an
acyclic dependency graph. To find the stable matching of this
example, GS algorithm needs 6 iterations and FIND ROOTS
needs 3 iterations.

Based on the above discussion, we know that the parallel
GS algorithm finds the stable matching for a rooted depen-
dency graph and an acyclic dependency graph in O(n2 log n)
time. However, FIND ROOTS finds the stable matching for
a rooted dependency graph and an acyclic dependency graph
in O(n log n) time. Thus, the speedup for worst time com-
plexity of FIND ROOTS to GS algorithm is O(n). Both
FIND ROOTS and GS algorithms take n man/woman rank-
ing lists as inputs and every list contains n numbers, each
with length of log n bits1. Thus, the needed spaces for both
algorithms are the same. Table I compares the parallel GS
algorithm and the parallel FIND ROOTS algorithm for finding
the stable matching in any rooted dependency graph or acyclic
dependency graph with respect to time, the number of PEs and
memory space (in bits).

1In this paper, all logarithms are in base 2.

Algorithm Time PEs Space
GS O(n2 log n) n O(n2 log n)

FIND ROOTS O(n log n) n2 O(n2 log n)

TABLE I

COMPARISON OF ALGORITHMS FOR FINDING A STABLE MATCHING

III. IMPLEMENTING THE SCHEDULER

One of the objectives of our work is to design a scheduler
that is feasible to implement. In this section, we present the
hardware design and implementation of the scheduler based on
the FIND ROOTS algorithm. An n×n scheduler has n2 pairs
of inputs as (wr1,1,mr1,1), · · · , (mrn,n, wrn,n), and n pairs
of outputs as the indices of n roots, s1, s2, · · · , sn. The circuit
consists of n2 nodes arranged as an n × n array. Each node
corresponds to an entry in a ranking matrix A and a vertex of
A’s dependency graph. We use 2n buses to interconnect n2

nodes such that node ni,j , where 1 ≤ i, j ≤ n, is connected
to the ith row bus, ri, and the jth column bus, cj . Each bus
is log n-bit wide. The first bit line of all n row buses are
connected to a controller, which is used to select one out of
possibly multiple bus requests (in the case of multiple root
nodes exist in a graph). Each node ni,j has 2 inputs for reading
its (h, v) pair, and one output to send out its index. Figure 3
shows the scheduler block diagram, circuit structure, and node
block diagram of a 4 × 4 scheduler.

The operation of an n × n scheduler has n iterations.
Initially, each node ni,j sets its (h, v) = (wri,j ,mrj,i). Each
iteration operates as follows. For each node ni,j , if it finds
its (h, v) = (1, 1) (i.e. it is a root node), it will send a ‘re-
quest signal’ on its row bus. If the controller detects that there
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Size N=2 N=4 N=6 N=8 N=10 N=12
Timing 62.24 137.28 239.52 315.84 399.6 479.52
Area 1166 5410 12263 29283 41002 59342

TABLE II

TIMING AND AREA RESULTS OF THE SCHEDULER DESIGN.

are more than one buses requesting, it will confirm the bus with
the minimum row index and send back a ‘grant signal’ to the
bus. Once a root node ni,j gets the ‘grant signal’ from its row
bus, it will send a ‘mask signal’ on row bus ri and column bus
cj to eliminate all nodes on row i and column j; meanwhile,
it will update its (h, v) = (0, 0) and send out its index. Once
a node on row i (resp. column j) receives a ‘mask signal’, it
will send out its v (resp. h) value on its column (resp. row)
bus. If a node with its h (resp. v) value is greater than the h
(resp. v) value received from its row bus (resp. column bus),
it will subtract its h (resp. v) value by 1.

The major advantage of this design is its simplicity. We
only use 2n log n-bit buses to broadcast signals to nodes
of the same row or the same column, and one log n-bit
priority encoder functioning as a controller for bus arbitration.
Although n2 nodes are used, the logic of each node is simple,
which mainly includes 2 log n-bit registers used to store its
h and v values, one log n-bit comparator, and one log n-
bit adder. We conducted simulations of the scheduler design
on Synopsys’s design tools. We wrote the VHDL [11] code,
compiled and synthesized it on Synopsys’s design analyzer
[12] using its library lsi 10k. The design analyzer was directed
to minimize the area cost of the design. Table II depicts the
timing results (in terms of ns) and the area results (in terms of
the number of 2-input NAND gates) of the scheduler design
for n = 2, 4, 6, 8, 10, 12. The timing and the number of 2-
input NAND gates are proportional to n and n2 respectively,
making the design feasible to be implemented with current
CMOS technologies.

Another advantage of the design is its compatibility. Our
scheduler design works well for real applications, including
the case that ranks in some ranking lists are not distinct (e.g.
cells with the same priority), the case that the lengths of some
ranking lists are not equal to n (e.g. in some input queue, there
is no cell destined for some output port), and the case that the
sizes of man set and woman set are not equal (e.g. the number
of input queues is not equal to the number of output queues).

IV. CONCLUSION

In this paper, we addressed the acyclic stable matching
problem and proposed a parallel algorithm to solve the stable
matching problem for rooted dependency graphs, which con-
tains all acyclic dependency graphs as special cases. We de-
signed a hardware scheduler based on the proposed algorithm.
Simulation results show that the proposed scheduler design is
feasible with current CMOS technologies. To the best of our
knowledge, the scheduler design is the first hardware design
for acyclic stable matching algorithms. It is very useful for
switch controls of high-speed switches/routers. Future work
includes hardware design optimization to achieve different
application requirements.
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