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Abstract. In this paper, we propose a new approach, parallel itera-
tive improvement (PII), to solving the stable matching problem. This
approach treats the stable matching problem as an optimization prob-
lem with all possible matchings forming its solution space. Since a sta-
ble matching always exists for any stable matching problem instance,
finding a stable matching is equivalent to finding a matching with the
minimum number (which is always zero) of unstable pairs. A particu-
lar PII algorithm is presented to show the effectiveness of this approach
by constructing a new matching from an existing matching and using
techniques such as randomization and greedy selection to speedup the
convergence process. Simulation results show that the PII algorithm has
better average performance compared with the classical stable match-
ing algorithms and converges in n iterations with high probability. The
proposed algorithm is also useful for some real-time applications with
stringent time constraint.

1 Introduction

The stable matching problem (or stable marriage problem) was first introduced
by Gale and Shapley [6]. Given n men, n women, and 2n ranking lists in which
each person ranks all members of the opposite sex in order of preference, a
matching is a set of n pairs of man and woman with each person in exactly
one pair. A matching is unstable if there are two persons who are not matched
with each other, and each of whom strictly prefers the other to his/her partner
in the matching; otherwise, the matching is stable. Gale and Shapley showed
that every instance of the stable matching problem admits at least one stable
matching and such a matching can be computed in O(n2) iterations. The paper
of Gale and Shapley sparked much interest in many aspects and variants of the
classical stable matching problem. For a good survey on this subject, refer to
[8].

Recently, the solutions to the stable matching problem have been applied to
switch scheduling for packet/cell switches. Many scheduling algorithms based on
stable matchings have been proposed for both input queued (IQ) switches and
combined input and output queued (CIOQ) switches (e.g. [3,15,17,18,20]). It has
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been shown that scheduling algorithms based on stable matchings can provide
QoS guarantees.

For real-time applications, the algorithm proposed by Gale and Shapley,
simply GS algorithm, is not fast enough. Attempting to find stable matching
algorithms with low complexity was made by many researchers (e.g. [1,7,10,11,
16,21,22]). Up to date, the best known algorithm for stable matching problem
takes O(

√
n · log3 n) time [5]. This parallel algorithm runs on a CRCW PRAM

(concurrent-read concurrent-write parallel random access machine) of n4 proces-
sors, which makes it infeasible for applications in packet/cell-switched networks.
The parallelizability of the stable matching problem is far from being fully un-
derstood. It was suggested that parallel stable matching algorithms cannot be
expected to provide high speedup on the average [13,19]. Thus, designing efficient
parallel algorithms that perform well for most cases is a challenging endeavor.

In this paper, we propose a new approach, parallel iterative improvement
(PII), to solving the stable matching problem. The PII algorithm consists of
two alternating phases, Initiation Phase and Iteration Phase. An Initi-
ation Phase is a procedure that randomly generates a matching. An Iter-
ation Phase consists of multiple improvement iterations. We try to speedup
the convergence process by exploring parallelism in identifying a subset of un-
matched pairs to replace matched pairs for an existing matching so that the num-
ber of unstable pairs in newly obtained matching can be reduced. We show that
an Initiation Phase and an iteration of an Iteration Phase take O(log n)
time on both completely connected multiprocessor system and array with mul-
tiple broadcasting buses, and O(log2 n) time on both hypercube and MOT, all
assumed having n2 processor elements (PEs). Simulation results show that the
PII algorithm has better average performance compared with the classical stable
matching algorithms and converges in n iterations with high probability.

2 Preliminaries

Let M = {m1, m2, · · · , mn} and W = {w1, w2, · · · , wn} be the sets of n men
and n women respectively. Let mLi = {wri,1, wri,2, · · · , wri,n} and wLi =
{mri,1, mri,2, · · · , mri,n} be the ranking lists for man mi and woman wi respec-
tively, where wri,j (resp. mri,j) is the rank of woman wj (resp. man mj) by man
mi (resp. woman wi). Let A be a ranking matrix of size of n × n, where each
entry of A is a pair ai,j = (wri,j , mrj,i). We call wri,j (resp. mrj,i) the left value
(resp. right value) of ai,j , and denote it by aL

i,j (resp. aR
i,j). For convenience, we

use (ax
i,j , a

y
i,j) to denote the indices (i, j) of pair ai,j . Clearly, the ordered list of

left values of all pairs in row i of A is man ranking list mLi and the ordered list
of right values of all pairs in column j is woman ranking list wLj . Example 1
shows the ranking matrix obtained from the given ranking lists.
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Example 1. An instance of stable matching problem:

Man ranking lists: Woman ranking lists: Ranking matrix:
mL1 : {4, 2, 3, 1}; wL1 : {1, 4, 2, 3}; 4, 1 2, 1 3, 4 1, 3
mL2 : {3, 1, 2, 4}; wL2 : {1, 2, 3, 4}; 3, 4 1, 2 2, 2 4, 1
mL3 : {2, 4, 1, 3}; wL3 : {4, 2, 3, 1}; 2, 2 4, 3 1, 3 3, 4
mL4 : {1, 4, 3, 2}. wL4 : {3, 1, 4, 2}. 1, 3 4, 4 3, 1 2, 2

A pair ai,j in A corresponds to a man-woman pair (mi, wj). A matching,
denoted as M, corresponds to n pairs of A with no two pairs in the same
row/column. If a pair of A is in M, it is called a matching pair of M and
otherwise a non-matching pair. For any matching M of ranking matrix A, we
define the marked ranking matrix, AM, as the ranking matrix with all matching
pairs marked. Thus for any matching M, each row i (resp. column j) of AM has
exactly one matching pair, which is denoted as M(Ri) (resp. M(Cj)). A pair
ai,j is an unstable pair if aL

i,j < M(Ri)L and aR
i,j < M(Cj)R. By the definition

of stable matching, we have:

Property 1. A matching M is stable if and only if there is no unstable pair in
AM.

With respect to AM, we define a set NM1 of type-1 new matching pairs
(simply nm1-pairs) as follows. If there is no unstable pair in AM, NM1 = ∅.
Otherwise, for every row Ri with at least one unstable pair, select the one with
the minimum left value among all unstable pairs in row Ri as an nm1-generating
pair; for every column Cj with at least one nm1-generating pair, select the one
with the minimum right value as an nm1-pair.

Based on NM1, we define a set NM2 of type-2 new matching pairs (simply
nm2-pairs) by a procedure that first identifies nm2-generating pairs and then
identifies nm2-pairs using an nm2-generating graph. For any nm1-pair ai,j in
AM, pair al,k with l = M(Cj)x and k = M(Ri)y is called the nm2-generating
pair corresponding to ai,j . We say that nm1-pair ai,j and its corresponding nm2-
generating pair al,k are associated with matching pairs ai,k and al,j . We define
an nm2-generating graph GM as follows: V (GM) = {all nm2-generating pairs},
and E(GM) = {e = (u, v)| two nm2-generating pairs u and v are associated with
a common matching pair}. Since each nm2-generating pair is associated with 2
matching pairs, we have:

Property 2. Given any AM, the degree of nm2-generating graph GM is at most
2.

By Property 2, each connected component in GM is a cycle or chain, named
nm2-generating cycle or nm2-generating chain (an isolated node is a chain of
length 0). If a node in GM has degree 2, it is called an internal node and otherwise
an end node. Clearly, if an nm2-generating pair ai,j is an internal node in GM,
there are two nm1-pairs, one in row i and the other in column j; if an nm2-
generating pair ai,j is an end node in GM, there is at most one nm1-pair in
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row i or column j. We call an end node ai,j a row end (resp. column end) of an
nm2-generating chain if there is no nm1-pair in row i (resp. column j) of AM.
An isolated node is both row end and column end.

By the nm2-generating graph, we can generate the set NM2 of nm2-pairs
as follows. For each nm2-generating chain with row end ai1,j1 and column end
ai2,j2 , we generate an nm2-pair ai1,j2 . No nm2-pair is generated from any nm2-
generating cycle. Hence, there is a one-to-one correspondence between an nm2-
generating chain and an nm2-pair. Let NM = NM1 ∪ NM2. We call NM the
set of new matching pairs (simply nm-pairs). Based on the way that NM is
generated, we know that NM1 and NM2 are disjoint, and each row/column of
AM contains at most one nm-pair.

A matching pair ai,j in AM is called a replaced matching pair (simply rm-
pair), if it is in the same row/column of an nm-pair. We denote the set of
rm-pairs by RM . Based on the way that RM is constructed, we have:

Lemma 1. If there is at least one unstable pair in AM, then M′ = (M−RM)∪
NM is a matching different from M.

3 Parallel Iterative Improvement Matching Algorithm

In this section, we present our main result, a parallel iterative improvement algo-
rithm (PII algorithm) for a completely connected multiprocessor system, which
consists of a set of PEs connected in such a way that there is a direct connection
between every pair of PEs. We assume that each PE can communicate with at
most one adjacent PE during every communication step. The PII algorithm uses
n2 PEs. To facilitate our discussion, these n2 PEs are placed as an n × n array.
As input, PEi,j , (1 ≤ i, j ≤ n), contains ai,j of ranking matrix A. When the
algorithm terminates, a stable matching is found by PEi,j indicating whether
pair (mi, wj) is in the matching. The key idea of the PII algorithm is to construct
a new matching M′ from an existing matching M in hope that M′ is “closer”
to a stable matching than M.

3.1 Constructing an Initial Matching

To randomly generate an initial matching can be reduced to generate a random
permutation, which can be done by a sequential algorithm proposed in [4]. In the
following, we show how to implement it in parallel on a completely connected
multiprocessor system with N2 PEs.

Let each PE maintain a pointer. Initially, every PEi,j sets its pointer to
point to PEi+1,j , (1 ≤ i ≤ n − 1), and as a result, there are n disjoint lists.
Then, each PEi,i will randomly choose a j (i ≤ j ≤ n) to swap their pointers,
i.e. PEi,i points to PEi+1,j and PEi,j points to PEi+1,i. Consequently, n new
disjointed lists originated from PE1,j are formed. After performing log n times
of pointer jumping [12], each PE1,j finds another end PEn,p(1,j) of its list, where
p(1, j) is the column position of the PE pointed by PE1,j . Hence, a matching
{(j, p(1, j))|1 ≤ j ≤ n} is formed. Clearly, this parallel implementation takes
O(log n) time since each list has length of n.
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3.2 Construct a New Matching from an Existing Matching

A basic operation of PII algorithm is to construct a new matching M′ = (M −
RM)∪NM from an existing matching M if M is unstable. In the following, we
describe 6 steps to carry out this operation.

Step 1: Recognize Unstable Pairs. Every PE with a matching pair in M
broadcasts its column/row position and the left/right value of its matching pair
to all PEs in the same row/column. If PEi,j ’s both values are smaller, set its
Boolean variable ui,j := true, which indicates that pair ai,j is unstable; otherwise
set ui,j := false. The broadcasting in rows/columns takes O(log n) time.

Step 2: Stability Checking. Find if there exists a PEi,j with ui,j := true
by binary searching in rows/columns. Since each row/column has n PEs, the
searching takes O(log n) time. If fi,j := false for any PEi,j , then the current
matching M is stable, and the algorithm terminates. Otherwise, go to the next
step.

Step 3: Find NM1. For each row with at least one unstable pair, find the
unstable pair with the minimum left value, and mark this pair as an nm1-
generating pair. For each column with at least one nm1-generating pair, find the
nm1-generating pair with the minimum right value, and mark this pair as an
nm1-pair. The find-minimum operation in rows/columns takes O(log n) time.

Step 4: Find nm2-Generating Pairs. For each PEi,j containing an nm1-pair,
mark the pair in PEl,k as a nm2-generating pair, where l = M(Cj)x and k =
M(Ri)y. Clearly, this step only takes O(1) time.

Step 5: Find NM2. This step consists of two major objectives: (1) each nm2-
generating node that is both row end and column end in GM recognizes itself
as an isolated node, and (2) the row end of each nm2-generating chain in GM
finds its column end. Let each PEi,j containing an nm2-generating pair maintain
two pointers, r-pointer and c-pointer. The r-pointer (resp. c-pointer) of PEi,j

points to the PE containing an nm2-generating pair in column M(Ri)y (resp.
row M(Cj)x) if there is an nm1-pair in row i (resp. column j), and otherwise to
itself. If both r-pointer and c-pointer of PEi,j point to itself, then it corresponds
to an isolated node in GM; if the r-pointer (resp. c-pointer) of PEi,j points to
itself but another pointer points to some other PE, then PEi,j contains an nm2-
generating pair that is the row (resp. column) end of an nm2-generating chain;
if both r-pointer and c-pointer of PEi,j point to other PEs, its nm2-generating
pair corresponds to an internal node of GM. Fig. 1 shows an example. By a
completely connected multiprocessor with N2 PEs, objective (1) can be easily
achieved in O(1) time and objective (2) can be achieved by performing �log n�
times of pointer jumping [12] since the length of each nm2-generating chain is
at most n. Once objectives (1) and (2) are accomplished, the nm2-pairs can be
easily computed in O(1) time.

Step 6: Construct New Matching. Each PEi,j containing an nm-pair marks
the matching pair in row i as a replaced pair, and marks itself as a matching
pair. This step takes O(1) time.
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Fig. 1. Finding a new matching M′ from an existing matching M,
where M = {a0,0, a1,9, a2,10, a3,7, a4,8, a5,1, a6,6, a7,5, a8,4, a9,3, a10,2}, NM1 =
{a1,7, a3,1, a4,6, a5,9, a6,5, a7,4, a8,3, a10,10}, NM2 = {a2,2, a9,8}, RM =
{a1,9, a2,10, a3,7, a4,8, a5,1, a6,6, a7,5, a8,4, a9,3, a10,2} and M′ = (M − RM) ∪ NM =
{a0,0} ∪ NM1 ∪ NM2.

3.3 PII Algorithm

Now we are ready to present our PII algorithm. Conceptually, the PII algorithm
has two alternating phases: Initiation Phase and Iteration Phase. The Ini-
tiation Phase finds an initial matching arbitrarily. The Iteration Phase
contains at most c · n iterations, where c is a constant for controlling the num-
ber of iterations in the Iteration Phase. Each iteration of Iteration Phase
checks whether an existing matching M is stable. If M is stable, the algorithm
terminates; otherwise, a new matching M′ is constructed. Then, M′ is used as
M for the next iteration. After c·n iterations in each Iteration Phase, the PII
algorithm goes back to Initiation Phase to generate a new initial matching
randomly and a new Iteration Phase is effected based on this new generated
matching. As we analyzed, an Initiation Phase and an iteration of an It-
eration Phase takes O(log n) time on a completely connected multiprocessor
system with n2 PEs.

In an iteration of an Iteration Phase, a new matching M′ = (M−RM)∪
NM1 ∪ NM2 is constructed from an existing matching M. It is easy to verify
that the pairs in NM1 were unstable for M, but become stable for M′; the pairs
in NM2 are stable for M′, regardless whether they were stable for M; and the
pairs in M, which were stable for M, remain to be stable for M′. Intuitively, the
number of unstable pairs for M′ is smaller than the number of unstable pairs
for M. For most cases, it is true. This is the heuristic behind the PII algorithm.

However, new unstable pairs may be generated for M′. Let the initial match-
ing be M0 and the matching generated in the i-th iteration be Mi. Since the
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set of nm1-pairs, nm2-pairs and rm-pairs with respect to Mi−1 is unique, the
matching Mi is constructed uniquely from Mi−1. Hence, if Mi ∈ {Mj |j ∈
{0, 1, · · · , i − 1}}, i.e. the newly generated matching is the same as a previously
generated matching, no stable matching can be found. It is possible to include a
procedure for detecting this cyclic situation. Such a procedure, however, is too
time-consuming. This is why we decided to start a new round after c · n itera-
tions of an Iteration Phase. The random permutation generating algorithm
we used generates random matchings with uniform distribution according to [2].
Therefore, by the existence of a stable matching, the PII algorithm can always
find one for any instance of stable matching problem.

Our simulation results (see Section 5) indicate that the PII algorithm has
better performance compared with GS algorithm. However, we are unable to
theoretically exclude the possibility that the cases in which the total number of
iterations is very large. In order to enforce a bound for the number of iterations,
we propose to run the PII algorithm and parallel GS algorithm simultaneously in
a time-sharing fashion. We denote this modified PII algorithm as PII-GS, which
terminates once one of the algorithms generates a stable matching. Clearly, the
PII-GS algorithm converges to a stable matching with O(n2) iterations in the
worst case.

4 Implementations of PII Algorithm on Parallel
Computing Machine Models

In this section, we consider implementing the PII algorithm on three well-known
parallel computing systems − hypercube, mesh of trees (MOT) and array with
multiple broadcasting buses. Without loss of generality, assume n = 2k. If 2k <
n < 2k+1, the PII algorithm can be implemented on a 22k-processor system with
a constant slow-down factor. The n2 PEs in each system are placed as n × n
array, and n PEs in each row/column form a row/column connection (see Fig.
2). We assume that our parallel computing systems operate in a synchronous
fashion. Basic O(1)-time parallel operations of a hypercube and a MOT can
be found in [14]. For an array with multiple broadcasting buses, we assume
that each bus has a controller. A processor can request to communicate with
the controller or any other processor on the bus. At any time, more than one
processor on a bus may send requests to the bus controller, and the controller
selects one request (if any) to grant the bus access arbitrarily. The controller of
a bus can broadcast a message to all the processors on the bus. We assume that
each processor-to-processor, processor-to-controller and broadcasting operation
takes O(1) time.

It is simple to notice that multiple-broadcasting, finding minimum, and
pointer jumping are the most time consuming operations in the PII algorithm.
The pointer jumping can be carried out by sorting. Let C be a parallel com-
puting machine with n2 processors, and let TB(n), TM (n) and TS(n) be the
time required for multiple-broadcasting, finding minimum and sorting on C, re-
spectively. Then, an Initiation Phase of PII algorithm can be implemented
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(b)(a) (c)

Fig. 2. (a) A 16-processor hypercube (b) A 4 × 4 mesh of trees (c) A 4 × 4 array with
multiple broadcasting buses

on C in O(TS(n) · log n) time, and each iteration of an Iteration Phase of
PII algorithm can be implemented on C in O(max{TB(n), TM (n), TS(n) · log n})
time.

For a hypercube and a MOT, the operations of broadcasting and finding-
minimum in PII are performed in parallel row-wise or column-wise. Thus,
TB(n)= TM (n) = O(log n) for a hypercube and a MOT. For an array with
multiple broadcasting buses, TB(n) = O(1). Finding-minimum operation can
be carried out on a bus in O(log n) time using a binary searching method. For
an n2-processor hypercube TS(n) = O(log2 n) while TS(n) = Ω(n) for a MOT
and an array with multiple broadcasting buses since either of their bisection
widths is n. If we use sorting to implement pointer jumping operations, both an
Initiation Phase and an iteration in an Iteration Phase of PII algorithm
require O(log3 n) time on a hypercube and Ω(n log n) time on a MOT and an
array with multiple broadcasting buses. In the following, however, we show that
sorting can be avoided on these parallel computing models using special features
of PII algorithm.

First, we show how to implement an Initiation Phase without pointer
jumping. This can be done by adopting a parallel implementation in [9] of the
algorithm of [4]. Let πi, (1 ≤ i ≤ n − 1), be the permutation interchanging
i and ri that is chosen randomly from the set {i, · · · , n} while leaving other
elements of {1, 2, · · · , n} fixed. Let πn be an identity permutation. Initially, we
use row i to represent πi. The computation π = π1 ◦ π2 ◦ · · · ◦ πn−1 ◦ πn is
organized in a complete binary tree of height log n. For example, for n = 8,
π = ((π1 ◦ π2) ◦ (π3 ◦ π4)) ◦ ((π5 ◦ π6) ◦ (π7 ◦ π8)). Hence, all that remains
is to consider the composition of two permutations. Given a permutation π′,
let D(π′) = {i|1 ≤ i ≤ n, and π′(i) 	= i}. The algorithm of [9] associates
|D(π′)| processors to π′. In our implementation, we mimic the operations of one
processor in [9] using a set of processors and their connections. More specifically,
we associate each row/column i to πi at the beginning. Let π(i,j) = πi◦πi+1◦· · ·◦
πj = π(i,(j−i+1)/2)◦π((j−i+1)/2+1,j), where j−i+1 is an integer of power of 2. Note
that |D(π(i,j))| ≤ j − i + 1. Thus, we can use row i through row j and column
i through column j to perform the operations assigned to the processors for
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computing π(i,j) in the algorithm of [9]. The communication paths for computing
the composition of permutations at the same level of the binary computation tree
are disjoint, because they use disjoint sets of row and column connections. Since
the height of the binary computation tree is O(log n), an Initiation Phase
of PII algorithm takes O(log2 n) time on a hypercube and a MOT. If an array
with multiple broadcasting buses is used, an Initiation Phase of PII algorithm
takes O(log n) time.

We now show how to implement an iteration of Iteration Phase with-
out using pointer jumping. Since each row/column contains at most one nm2-
generating pair, each pointer jumping of Step 5 can be decomposed into disjoint
parallel 1-to-1 row communications followed by disjoint parallel 1-to-1 column
communications without conflicts. Thus, every pointer jumping can be imple-
mented in O(log2 n) time on a hypercube and a MOT, and in O(log n) time on
an array with multiple broadcasting buses. We also note that simulating an n×n
MOT by an n/2 × n/2 MOT (which has 3n2/4 − n < n2 processors) results in a
constant slowdown factor. To summarize, we show the improvement of the time
complexity of PII algorithm on three parallel computing systems in Table 1.

Table 1. Time complexity for implementations of PII algorithm on three parallel
computing machine models

Machine models
Initiation Phase An iteration in Iteration Phase

with sorting without sorting with sorting without sorting
Hypercube O(log3 n) O(log2 n) O(log3 n) O(log2 n)

MOT O(n log n) O(log2 n) O(n log n) O(log2 n)
Array with Buses O(n log n) O(log n) O(n log n) O(log n)

5 Simulation Results

We have simulated PII, PII-GS, and parallel GS algorithms for different sizes
n ∈ {10, 20, · · · , 100} of stable matching, with 10000 runs each. The ranking
lists and initial matchings are generated by random permutation algorithm [4].
Each Iteration Phase contains n iterations. The performance comparisons
are based on the average number of parallel iterations for each algorithm to gen-
erate a stable matching and the frequency for each algorithm to converge in n
iterations. From the simulation, we notice that PII and PII-GS algorithms signif-
icantly outperform GS algorithm. Fig. 3 shows that PII and PII-GS algorithms
converge in n iterations with very high probabilities, while the probability for
GS algorithm to converge with the same number of iterations decreases quickly
as the sizes of problem increase.
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Fig. 3. Performance Comparisons (a) The average number of iterations for algorithms
to find a stable matching (b) The frequencies for algorithms to find a stable matching
within n iterations

6 Concluding Remarks

In this paper, we proposed a new approach, parallel iterative improvement, to
solving the stable matching problem. The PII algorithm requires n2 PEs, among
which n PEs are required to perform arithmetic operations (for random number
generation) and the other PEs can be simple comparators. The classical GS
algorithm and most existing stable matching algorithms can only find the man-
optimal or woman-optimal stable matching. By [8], the man (resp. woman)-
optimal stable matching is women (resp. men)-pessimal, i.e. every man/woman
gets the best partner while every woman/man gets the worst partner over all
stable matchings. However, due to randomness, the PII algorithm constructs a
stable matching that is contained in the set of stable matchings. Therefore, this
algorithm will generate the stable matching with more fairness.

In some applications, such as real-time packet/cell scheduling for a switch,
stable matching is desirable, but may not be found quickly within tight time
constraint. Thus, finding a “near-stable” matching by relaxing solution qual-
ity to satisfy time constraint is more important for such applications. Most of
existing parallel stable matching algorithms cannot guarantee a matching with
a small number of unstable pairs within a given time interval. Interrupting the
computation of such an algorithm does not result in any matching. However, the
PII algorithm can be stopped at any time. By maintaining the matching with
the minimum number of unstable pairs found so far, a matching that is close to
a stable matching can be computed quickly.
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