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Abstract— Multistage interconnection networks (MINs) can be
used to construct electro-optic switches. To implement crosstalk-
free switching in such a switch, two I/O connecting paths cannot
share a common switching element (SE). Thus, a permutation
must be decomposed into partial permutations, each being routed
through the switch without crosstalk. It was shown that any
permutation can be decomposed into two semi-permutations,
and each is a maximum partial permutation realizable in one
pass in an optical Benes network. However, the time complexity
of existing decomposition algorithms for realizing connection
requests is proportional to permutation size. In this paper,
we reexamine the permutation capacity of MINs, present a
simpler proof for semi-permutation decomposability, and propose
a parallel decomposition algorithm of logarithmic time. This
algorithm is shown useful for optimally routing crosstalk-free
paths in optical Benes networks in high-speed.

Index Terms— Optical multistage interconnection networks
(OMINs), crosstalk, semi-permutation, parallel algorithm, graph
coloring.

I. INTRODUCTION

The explosive growth of Internet is driving an increased
demand for transmission rate and faster switching technolo-
gies. Optical communications with photonic switching promise
to meet high bandwidth, low error probability, and large
transmission capacity. To build a large IP router with capacity
of 1 Tb/s and beyond, MINs will be used. Such networks can
be realized either all electronically or with the introduction of
optical switching. Optical routers will have better scalability
than electronic routers in terms of switching capacity. Unfortu-
nately, the required optical technologies are immature for all-
optical switching to happen anytime soon. A hybrid approach
in which optical signals are switched, but both switch control
and routing decisions are carried out electronically, becomes
more practical. Advances in electro-optic technologies provide
a promising choice to meet the increasing demands for high
channel bandwidth and low communication latency.

A hybrid OMIN can be built from 2× 2 electro-optic SEs
such as common lithium-niobate (LiNbO3) SE (e.g. [3], [4],
[22]). Each SE is a directional coupler with two inputs and two
outputs. Depending on the amount of voltage at the junction of
the two waveguides, optical signals carried on either of two in-
puts can be coupled to either of two outputs. An electronically
controlled optical SE can have switching speed in the range
from hundreds of picoseconds to tens of nanoseconds [18].

However, large OMINs built from integrating these electro-
optic SEs have the problem of crosstalk, which is caused
by undesired coupling between signals of the same (close)
wavelength(s) carried in two waveguides so that two signal
channels interfere with each other. Figure 1 shows an example
of crosstalk in an SE. An SE has two logic states, namely,
straight and cross (see Figure 1 (a)). For the straight state, a
small fraction of input signal injected at the upper input may
be detected at the lower output (see Figure 1 (b)). Crosstalk
can also occur when an SE is in the cross state. Consequently,
the input signal will be distorted at output due to loss and
crosstalk accumulated along connection path.
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Fig. 1. Crosstalk in an electro-optic SE.

In order to reduce the crosstalk effect, three approaches,
space dilation, time dilation and wavelength dilation, have
been proposed. In both space and time dilation, crosstalk can
be eliminated by ensuring that only one signal pass through an
SE at a time. In other words, only one input and one output
of an SE is used at any time instance. In a space dilation
approach, an N × N OMIN is dilated into a network that is
essentially equivalent to a 2N × 2N network (e.g. [9], [11],
[23], [24]). The space dilation trades the hardware cost that
is more than 2 times of regular OMINs to achieve the same
permutation capability. In a time dilation approach, crosstalk
can be avoided by using the principle of reconfiguration with
time division multiplexing (RTDM) paradigm proposed by C.
Qiao et al. in [14]. More specifically, a set of permutation
connections is partitioned into subsets so that the connections
in each subset can be established simultaneously without
crosstalk and the subsets can be used to form a sequence
of configurations for the set of connections. Such a subset
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is called a crosstalk-free (CF) partial permutation. Since the
paths realizing a CF partial permutation for a given OMIN do
not share any SE, the time dilation approach is also useful
for establishing a set of connections that would normally
cause conflicts in blocking OMINs such as Banyan networks
[12], [15], [21]. In the wavelength dilation approach, the
crosstalk between two signals passing through the same SE
is suppressed by ensuring two wavelengths to be far apart by
routing (e.g. [19], [20]), or by using wavelength converters
(e.g. [16], [17]), which limits the efficiency of bandwidth
utilization and/or increases cost and complexity.

In this paper, we focus on how to quickly configure an
OMIN for realizing permutations using the approach of time
dilation. A special type of partial permutation, named semi-
permutation, has demonstrated the maximum potential to be
realized in OMIN in one pass without crosstalk [25], [26].
It was shown that for the optical Benes network, any semi-
permutation is realizable in one pass and any permutation can
be routed in two passes, which is the minimum number of
passes needed for a permutation in an OMIN. However, the
existing permutation decomposition algorithms have O(N)
time complexity and the crosstalk-free routing algorithms
in an optical Benes network take O(N log N) time1, which
is too time-consuming even for circuit switching in optical
domain. In this paper, we reexamine the permutation capacity
of OMINs, show the decomposability of semi-permutation
based on edge coloring of a bipartite graph, and propose a
fast parallel decomposition with time complexity O(log K)
for avoiding crosstalk in OMINs. We then present a routing
algorithm based on our parallel decomposition with improved
time complexity O(log2 K + log N) for realizing any one-to-
one I/O mapping with K(≤ N) active inputs in an N × N
optical Benes network.

II. DECOMPOSING A PERMUTATION INTO TWO

SEMI-PERMUTATIONS

In this section, we will present our main result, a parallel
decomposition algorithm to decompose a permutation into two
semi-permutations. This decomposition algorithm is equivalent
to find a 2-edge coloring of a bipartite graph where every
vertex has degree of 2.

A. Decomposability

Let I = {I0, I1, · · · , IN−1} and O = {O0, O1, · · · , ON−1}
be the sets of inputs and outputs, respectively, of an N × N
OMIN. Let π : I �−→ O be an I/O mapping that indicates
connection requests from inputs to outputs. Input Ii is active
if there is a connection request from Ii to Oj , and in this case,
π(i) = j and π−1(j) = i.

An I/O mapping π is a permutation if π is a one-to-
one I/O mapping and all inputs are active. A one-to-one I/O
mapping involving K(< N) active inputs is called a partial
permutation. Clearly, a permutation can not be realized in a
single pass in an N × N OMIN without crosstalk. Hence,
we are interested in a type of partial permutation that can

1In this paper, all logarithms are in base 2.

be passed through OMIN without crosstalk. Y. Yang et al.
[25] introduced a concept called semi-permutation, which is a
partial permutation that ensures only one active input in each
SE of the first and last stages of an OMIN at the same time.
Formally, we have the following definition.

Definition 1: For any permutation π of {0, 1, · · · , N − 1},
a partial permutation with N/2 active inputs,
x0, x1, · · · , xN/2−1, is called a semi-permutation of π,
denoted as πs, if it satisfies:

{�x0/2�, �x1/2�, · · · , �xN/2−1/2�} =

{�π(x0)/2�, �π(x1)/2�, · · · , �π(xN/2−1)/2�} =

{0, 1, · · · , N/2− 1}.
�

Clearly, a semi-permutation is a maximum potential partial
permutation that can be realized in one pass of an N × N
OMIN built with 2× 2 SEs.

For any permutation π with N inputs, we can construct a
bipartite graph G, named I/O mapping graph, as follows. The
vertex set consists of two parts, A and B. Each part has N/2
vertices corresponding to I (resp. O), i.e. a pair of two inputs
(resp. outputs) 2i and 2i + 1 with i ∈ {0, 1, · · · , N/2 − 1},
called dual inputs (resp. outputs), is represented by a vertex
in A (resp. B). There is an edge between vertex �i/2� in
part A and vertex �j/2� in part B if j = π(i). An I/O
mapping graph may consist of parallel edges, which have the
same ends. However, there is a one-to-one correspondence
between inputs/outputs in a permutation and edges in an I/O
mapping graph G. Hence, we can label each edge by its
corresponding input/output. Since each vertex in G represents
two inputs/outputs, the degree of each vertex in G is 2.
Consider the following lemma proved in [2].

Lemma 1: Every bipartite graph G is ∆(G)-edge colorable,
where ∆(G) is the maximum degree of vertex in G. That is,
we can color edge set E(G) with ∆(G) colors so that the
adjacent edges have different colors.

By Lemma 1, we can establish the following theorem.
Theorem 1: Any permutation can be decomposed into two

semi-permutations.
Proof: We know that the I/O mapping graph constructed

from a permutation is 2-edge colorable by Lemma 1. If
we color E(G) with two colors, then two edges with ends
corresponding two dual inputs/outputs incident at a vertex in
G must have different colors. Thus, each of the subgraphs
induced by the edges of the same color contains all of vertices
in V (G) and half of edges in E(G). Therefore, each subgraph
is corresponding to a semi-permutation. �

Example 1: For the permutation

π =
(

0 1 2 3 4 5 6 7
1 6 0 5 3 2 7 4

)

a 2-edge coloring of its corresponding I/O mapping graph is
shown in Figure 2, with one color represented by solid edges
and the other by dashed edges. The solid edges correspond to
the semi-permutation

πs
1 =

(
0 3 4 6
1 5 3 7

)
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and the dashed edges correspond to the semi-permutation

πs
2 =

(
1 2 5 7
6 0 2 4

)

Clearly, π = πs
1 ◦ πs

2. �
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Fig. 2. A 2-edge coloring of bipartite graph G, where each edge is labeled by
its corresponding input, and solid and dashed edges are colored with different
colors.

B. Parallel Decomposition

Our parallel decomposition algorithm is presented for a
completely connected multiprocessor system, which consists
of a set of N processor elements (PEs) connected in such a
way that there is a direct connection between every pair of PEs.
The PEs are labeled beginning with 0 and placed as an array
according to their labels in nondecreasing order. We assume
that each PE can communicate with at most one processor
during a communication step.

To facilitate the description of our algorithm, we introduce
some notations. Let bvbv−1 · · · b1b0 be the binary representa-
tion of a. We use ā to denote the integer that has the binary
representation bvbv−1 · · · b1(1− b0). We use operator “:=” to
denote an assignment local to a PE or to the control unit, and
use operator “←” to denote an assignment requiring some
interprocessor communication.

Initially, each PEi reads π(i) from inputs, assigns value
of m(i) as i, and sets value of π−1 in PEπ(i) as i. The
pointer p(i) of PEi will be set to point to a PE with index
of π−1(π(i)), which is actually done by two steps. In the
first step, PEi computes ī and reads value of π(̄i) from the
PE with index ī. In the second step, PEi computes π(i) and
reads value of π−1(π(i)) from the PE with index of π(i).
Then, by 	log(N/2)
 times of pointer jumping [5], each PEi

computes its m(i) to be the minimum index of a PE it ever
points to. Finally, the parity of m(i) decides in which semi-
permutation input Ii is, i.e. all inputs with the same parity are
in the same semi-permutation. The detailed implementation is
given in Algorithm 1.

Theorem 2: For any permutation, Algorithm 1 correctly
computes two semi-permutations in O(log N) time on a
completely connected multiprocessor system of N PEs.

Proof: After initialization of N pointers, a set of directed
cycles (including loops) are formed (see Figure 3 for an
example). It is easy to see that two dual inputs and two inputs
mapped to a pair of dual outputs are in different directed

Input: A permutation
Output: Two semi-permutations

for all PEi, 0 ≤ i ≤ N − 1, do
m(i) := i;
π−1(π(i))← i;
p(i)← π−1(π(i)); /* pointer initialization */
for t := 1 to 	log(N/2)
 do

m(i)← min {m(i),m(p(i))}; /* comparison */
p(i)← p(p(i)); /* pointer jumping */

end for
if m(i) is even then

Ii is in the first semi-permutation;
else

Ii is in the second semi-permutation;
end if

end for

Algorithm 1: A Parallel Decomposition

cycles. Since the length of each directed cycle is at most N/2,
after 	log(N/2)
 times of pointer jumping, each PEi maintains
the minimum index of the input in the directed cycle/loop to
which Ii belongs. Hence, each PEi has m(i) ≡ 0 or 1 mod
2. Therefore, two dual inputs/outputs are in different semi-
permutations. Clearly, the algorithm takes O(log N) time since
pointer jumping dominates the time complexity. �

0 1 2 3 4 5 6 7

Fig. 3. Pointer initialization in Algorithm 1. By initializing N pointers, two
directed cycles, (0 → 6 → 3) and (1 → 2 → 7), and two loops, 4 and 5,
are formed, where each edge is represented by a circle, two dual inputs are
connected by a dotted line, and two inputs mapped to two dual outputs are
connected by a dashed line.

From the proof of theorem 2, we know that the decomposi-
tion of a permutation may not be unique, since we can assign
one of dual inputs/outputs to either of two semi-permutations.
In fact, if the number of cycles in its corresponding I/O
mapping graph is c, 1 ≤ c ≤ N/2, there are 2c−1 ways to de-
compose a given permutation into a pair of semi-permutations.
Two semi-permutations can be used to set SEs in the first and
last stages of N ×N OMINs for crosstalk-free switching. In
order to route a semi-permutation in a single pass without
crosstalk, we need to assure there is only one active input of
each SE in every stage of OMINs. In the next section, we will
present a parallel crosstalk-free routing algorithm to realize
semi-permutations in optical Benes networks.

III. A PARALLEL CROSSTALK-FREE ROUTING

ALGORITHM FOR OPTICAL BENES NETWORKS

The Benes network [1] is a rearrangeable nonblocking
permutation network and one of the most efficient switching
architectures in terms of the number of 2× 2 SEs used.
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Fig. 4. A B(8) contains 2 B(4)s within dashed boxes, each containing 2
B(2)s within dotted boxes.

An N × N Benes network is denoted by B(N). It is
constructed recursively. A B(2) is a 2×2 SE. A B(N) consists
of a switching stage of N/2 SEs, an N/2×2 shuffle connection
(i.e. Oi is connected to Ij with j ≡ N/2 · i + �i/2� mod
N in two adjacent stages [13]), followed by a stack of two
B(N/2)s, a 2×N/2 shuffle connection, and another switching
stage of N SEs. Each B(N) contains 2 subnetworks that
are B(N/2)s, and 4 subnetworks that are B(N/4)s, and so
on. Thus, a B(N) consists of 2 log N − 1 stages labeled by
0, 1, · · · , 2 log N−2 from left to right, and each stage consists
of N/2 SEs labeled by 0, 1, · · · , N/2− 1 from top to bottom.
A pair of SEs i and ī is called a pair of dual SEs. A B(8) is
shown in Figure 4. It was shown that any permutation can be
realized in an Optical Benes network in two passes under the
constraint of crosstalk-free [25]. The algorithm for routing a
semi-permutation in an optical Benes Network is given below
as Algorithm 2.

Input: A semi-permutation
Output: A setting of SEs of B(N) without crosstalk

Step 1. If the size of the semi-permutation is 1, set up B(2)
according to the connection request, and exit.
Step 2. Decompose the semi-permutation into 2 parts,
named upper- and lower-semi-permutation, satisfying that
two active inputs/outputs in a pair of dual SEs in the first/last
stage are in different parts.
Step 3. Set SEs in the first and last stages so that the active
inputs and outputs in the upper/lower-semi-permutation are
connected with the upper/lower subnetwork.
Step 4. Recursively call this algorithm in the upper/lower
subnetwork with the input of the upper/lower-semi-
permutation.

Algorithm 2: A Crosstalk-Free Parallel Routing Algorithm in
Optical Benes Networks

The correctness and complexity of Algorithm 2 are given
in the following theorem.

Theorem 3: For any semi-permutation of an optical B(N),
Algorithm 2 correctly computes the crosstalk-free I/O paths
and sets the SEs on the paths in O(log2 N) time on a
completely connected multiprocessor system of N PEs.

Proof: By the topology of B(N), we know that every pair
of dual SEs in stage i (resp. 2 log N−2−i), 0 ≤ i ≤ log N−2,
is connected with two SEs in stage i+1 (resp. i−1) and these
two SEs are in different subnetwork B(N/2i+1)s. In order to

satisfy the crosstalk-free constraint in each stage of B(N), two
active inputs (resp. outputs) belonging to a pair of dual SEs of
stage i (resp. 2 log N −2− i) must be connected with the SEs
in different subnetwork B(N/2i+1)s. It is equivalent to assign
a 2-edge coloring to a bipartite graph G, where 2 active inputs
(outputs) belonging to a pair of dual SEs of stage i (2 log N−
2− i) compose a vertex and each connection is corresponding
to an edge. Thus, by using parallel decomposition algorithm
recursively, the SEs are set to be crosstalk-free for any given
semi-permutation. By Theorem 2, the time complexity of Step
2 in Algorithm 2 is O(log N). Since there are total 2 log N−1
stages and every parallel decomposition step can decide the
setting of SEs of two stages (i.e. the first and last stages of a
subnetwork) in B(N), the time complexity for Algorithm 2 is
O(log2 N). �

By Theorem 3, given any permutation, we first call
Algorithm 1 to decompose the permutation into 2 semi-
permutations, then call Algorithm 2 twice to route two semi-
permutations without crosstalk. Thus, the time complexity to
route a permutation in an optical B(N) is O(log2 N), which
is the same as the time complexity of the best known parallel
routing algorithms for realizing a permutation in an electronic
B(N) [7], [10].

IV. EXTENDING THE CROSSTALK-FREE ROUTING FOR

PARTIAL PERMUTATIONS

The decomposition algorithm presented in Section II is used
to decompose a full permutation into two semi-permutations.
We can generalize this algorithm to one that can decompose
any partial permutation with K(< N) active inputs into
two partial permutations, each a subset of semi-permutation,
named partial semi-permutation. The decomposition of partial
permutation is equivalent to a 2-edge coloring of a bipartite
graph with ∆(G) ≤ 2. The extended parallel decomposition
can be done in O(log K) time on a completely connected
multiprocessor system of N PEs as follows.

Initially, each PEi is associated with edge i. Let p(i) be a
pointer of PEi, which is set to point to the PE with index of
π−1(π(i)) if i is active and π−1(π(i)) exists (i.e. there is an
active input j so that π(j) = π(i)), and otherwise it is set to
point to itself. For a partial permutation with K active inputs,
its corresponding I/G mapping graph G is the union of a set of
paths and cycles since ∆(G) ≤ 2. For cycles, the case is the
same as Algorithm 1. For paths, there are two directed paths
formed for each path by the pointer initialization. By pointer
jumping, the edges corresponding to the vertices in the same
directed path can be colored with the same color. The two
directed paths formed from a path can be colored with two
different colors by comparing the indices of the end edges.
For the detailed implementation, refer to [8], which contains
parallel decomposition as a special case of 2-colorings of
bipartite graphs.

Since a partial semi-permutation is a subset of some semi-
permutation, it can be routed in an optical Benes network in
one pass without crosstalk. By applying the extended parallel
decomposition in step 2 of Algorithm 2, the total time for
routing any partial permutation with K active inputs in an
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optical B(N) takes O(log N log K) since B(N) has 2 log N−
1 stages and there are log N iterations in Algorithm 2.

In order to improve the complexity of routing time to
O(log2 K + log N), we introduce a new concept, equitable
edge coloring. A graph G is equitable c-edge colorable if
E(G) can be colored with c different colors so that the adja-
cent edges are colored with different colors and the difference
between the sizes of any two color classes is at most one,
where a color class is the subset of E(G) with the same
color for the coloring. Clearly, both cycle and path are 2-
edge colorable. For any 2-edge colorings of paths or cycles,
the sizes of two color classes are equal for a cycle and an
even path while the difference between the sizes of two color
classes is one for an odd path. The color with which more
than half edges in an odd path are colored is called primary
color. Thus, given a partial permutation, if the I/O mapping
graph G has x odd paths, we color each path and cycle in G
with two different colors c1 and c2 so that 	x

2 
 odd paths have
c1 as primary color and the remaining �x

2 � odd paths have c2

as primary color. These 2-edge colorings of cycles and paths
compose an equitable 2-edge coloring of G.

To route a partial semi-permutation in an optical B(N)
without crosstalk in O(log2 K + log N) time, we need to
do a preprocessing and apply the equitable 2-edge coloring
technique in step 2 of Algorithm 2. The preprocessing is to
link K PEs corresponding to K busy inputs. This prepro-
cessing step can be done by a parallel prefix sums operation
[5], which takes O(log N) time on a completely connected
multiprocessors with N PEs. In the following, we show how
to color x odd paths of G with 2 colors so that the difference
of 2 color classes is at most 1. It is easy to see that for any odd
path, the edge whose dual input is not active will be colored
with primary color. We call this kind edge primary edge. We
concatenate all primary edges by a parallel prefix sums on
the K linked PEs and alternately color the primary edges
with two different colors. Thus there are 	x

2 
 primary edges
with one color and �x

2 � primary edges with another color.
The edges in an odd path will be colored using the primary
edge as reference. That is, if an edge e and a primary edge
f are in the same directed cycle, then e and f have the same
color, and otherwise they have different colors. Therefore, an
equitable 2-edge coloring of G is found. Figure 5 shows an
example. Since the operations of pointer jumping and parallel
prefix sums dominate the time complexity, an equitable 2-
edge coloring of G can be found in O(log K) time using a
completely connected multiprocessors with N PEs.

Using equitable 2-edge coloring technique, we can decom-
pose a partial permutation into two partial semi-permutations
with the difference between the sizes of two partial semi-
permutations being at most one. When we route a partial
semi-permutation in an optical Benes network, by applying the
equitable 2-edge coloring technique in step 2 of Algorithm 2,
the size of the partial permutation entering into each subnet-
work is reduced by half. Thus after log K iterations, there is at
most one active input entering into one subnetwork. Therefore,
the total time for setting up a partial semi-permutation in an
optical B(N) is O(log K) in first log K iterations. Since there
are 2 log N−1 stages in B(N), there are total log N iterations.

3

1

54321

4

8

( ii )

6
6

( iii )

Primary edges

9

8

9 121110

( i )

2

5

11

10

12

Fig. 5. An equitable 2-edge coloring of a graph consisting of 3 odd paths,
where directed paths are formed by pointer initialization.

Therefore, we have the following claim.
Theorem 4: For any partial permutation with K(< N)

active inputs of an optical B(N), it can be routed with
crosstalk-free in O(log2 K + log N) time using a completely
connected multiprocessor system of N PEs.

V. COMPARISONS OF THREE APPROACHES OF DILATION

FOR OPTICAL BENES NETWORKS

There are three approaches, time dilation, space dilation
and wavelength dilation, can be used to avoid the crosstalk
in OMINs.

In time dilation, the optical Benes network has the similar
structure as the electronic Benes network. For any electronic
Benes network, a permutation can be routed in one pass while
it must be decomposed into 2 semi-permutations and routed
by 2 passes in the corresponding optical Benes network to
avoid crosstalk.

In space dilation, a dilated Benes network, denoted as
DB(N), consists of 2 copies of B(N) with the corresponding
two inputs and outputs are connected to a 1 × 2 splitter and
a 2 × 1 combiner, respectively [6], [9] (see Figure 6 for
an example). Given a permutation, we first decompose the
permutation into 2 semi-permutations, then route each semi-
permutation in one of copies of DB(N) simultaneously.
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Fig. 6. A dilated Benes network DB(8).

Compared with the time dilation approach, the space dila-
tion approach uses more than double of hardware, i.e. twice of
SEs and links plus splitters and combiners, and more than half
of time to route a permutation, i.e. the time for decomposition
and routing of one semi-permutation.
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In wavelength dilation, if there is a wavelength converter
available in each SE, we can convert two input signals with
the same wavelength entering into the same SE to different
ones. Thus, two wavelengths are necessary plus the costs of
the wavelength converters. If there is no wavelength converter
available, i.e. each connection will be assigned the same
wavelength, then we find two wavelengths are not sufficient.
An example is given as follows.

Example 2: Routing the permutation

π =
(

0 1 2 3
0 2 1 3

)

in an optical B(4).
In order to route the permutation π in B(4), by the topology

of B(4), we know that inputs 0 and 1 (outputs 2 and 3)
are connected with different subnetwork B(2)’s, which are
two SEs in the second stage of B(4). Since π(1) = 2 and
π(3) = 3, we know that inputs 1 and 3 must be connected
with different SEs in the second stage. Consequently, inputs 0
and 3 must be connected with the same SE in the second stage
containing only 2 SEs. In order to avoid crosstalk, we must
use different wavelengths for connections 0 → 0 and 3 → 3.
We also know that the connections 0 → 0 and 1 → 2 must
be carried on the signal with different wavelengths since they
pass the same SE in the first stage. Thus, connections 3→ 3
and 1 → 2 must have the same wavelength if there are only
two available wavelengths. However, the connections 3 → 3
and 1→ 2 pass through the same SE in the last stage of B(4),
which will cause crosstalk. �

From the above discussion, we know that the time dilation
approach is the most cost-effective provided that the cost both
in space and in wavelength are at least as high as the cost in
time.

VI. CONCLUDING REMARKS

In this paper, we proposed a fast parallel decomposition
algorithm with time complexity O(log N), which can de-
compose any permutation with size of N into two semi-
permutations assuring no crosstalk in SEs of the first and last
stages in OMINs. Based on this parallel decomposition, we
further presented a fast crosstalk-free parallel routing algo-
rithm, which can set up any permutation in O(log2 N) time in
an optical B(N). The proposed decomposition algorithm can
be generalized to any partial permutation. Using the equitable
2-edge coloring technique, any partial permutation with K(<
N ) active inputs can be routed in O(log2 K + log N) time in
an optical B(N). In addition, the proposed algorithms run on
a completely connected multiprocessor system can be easily
translated to the algorithms on more realistic multiprocessor
systems.
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