
Parallel Routing Algorithms for Nonblocking
Electronic and Photonic Multistage Switching Networks

Enyue Lu and S. Q. Zheng
Department of Computer Science, University of Texas at Dallas, USA

�enyue, sizheng�@utdallas.edu

Abstract

Nonblocking multistage interconnection networks are fa-
vored to be used as switching networks whenever possi-
ble. Crosstalk-free requirement in photonic networks adds
a new dimension of constraints for nonblockingness. Rout-
ing algorithms play a fundamental role in nonblocking net-
works, and any algorithm that requires more than linear
time would be considered too slow for real-time applica-
tions. One remedy is to use multiple processors to route
connections in parallel. In this paper, we study the con-
nection capacity of a class of rearrangeable nonblocking
and strictly nonblocking networks with/without crosstalk-
free constraint, model their routing problems as weak or
strong edge colorings of bipartite graphs, and propose ef-
ficient routing algorithms for these networks using parallel
processing techniques.

1 Introduction

Interconnection networks have many different applica-
tions, including but not limited to, being used as intercon-
nects for communications among processors and between
processors and memory modules in a multiprocessor or
multicomputer system, and as a switching network within
a network router or switch. Roughly speaking interconnec-
tion networks are classified into two classes, direct (router-
based) networks and indirect (switch-based) networks [3].
A typical indirect interconnection network is a multistage
interconnection network (MIN). In this paper, we consider
MINs in the context of their being used as switching net-
works. We investigate their ability of simultaneously real-
izing one-to-one I/O mappings in the form of permutations.

A switching network usually comprises a number of
electronic or photonic switching elements (SEs) grouped
into several stages interconnected by a set of wires or op-
tical links. A photonic switching network can be built from
� � � electro-optical SEs such as common lithium-niobate
(LiNbO�) SE (e.g. [4, 5]). Each SE is a directional cou-
pler with two inputs and two outputs. Depending on the
amount of voltage at the junction of two waveguides, opti-
cal signals carried on either of two inputs can be coupled to
either of two outputs. An electronically controlled optical

SE can have switching speed ranging from hundreds of pi-
coseconds to tens of nanoseconds [15]. However, due to the
nature of optical devices, optical switches hold their own
challenges. One problem is crosstalk, which is caused by
undesired coupling between signals carried in two waveg-
uides so that two signal channels interfere with each other.
Fig. 1 shows an example of crosstalk in an SE. Each SE
has two logic states, namely, straight and cross (see Fig. 1
(a)). For the straight state, a small fraction of input signal
injected at the upper input may be detected at the lower out-
put (see Fig. 1 (b)). Crosstalk can also occur when an SE
is in the cross state. Consequently, the input signal will be
distorted at output due to crosstalk accumulated along con-
nection path.

Voltage

Electrode

Electrode

Input signal Output signal

Crosstalk

(b)

Waveguide

(a)

Straight

Cross

Figure 1. (a) States of an SE (b) Crosstalk in
an electro-optical SE.

According to blocking properties, Switching networks
are classified as blocking and nonblocking. In an SE, if two
active inputs (resp. outputs) intend to be connected with
the same output (resp. input), it causes output link conflict
(resp. input link conflict). Crosstalk in photonic switch-
ing networks adds a new dimension of blocking, called
node conflict, which happens when an SE has two active
inputs/outputs. In order to reduce blocking effect, one ap-
proach, called space dilation, has been proposed. In space
dilation approach, blocking can be eliminated by ensuring
at most one connection passing through a link for elec-
tronic switching networks (in which there is no crosstalk-
free constraint) or through both a link and an SE for pho-
tonic switching networks (in which there is the crosstalk-
free constraint). More specifically, blocking can be avoided

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

by increasing the number of SEs in a switching network
(e.g. [8, 9, 14, 16, 17, 18, 19]).

Nonblocking networks have been favored in switching
systems since they can set up any one-to-one I/O mapping.
There are three types of nonblocking networks: strictly non-
blocking (SNB), wide-sense nonblocking (WSNB) and re-
arrangeable nonblocking (RNB) [1, 6]. In both SNB and
WSNB networks, a connection can be established from any
idle input to any idle output without disturbing existing con-
nections. In SNB networks any of available conflict-free
paths for a connection can be chosen and in WSNB net-
works, however, a rule must be followed to choose one. The
high degree of connection capability in SNB and WSNB
networks is at a high hardware cost. RNB networks, usu-
ally constructed with lower hardware cost, can establish a
conflict-free path for the connection from any idle input to
any idle output if the rearrangement of existing connections
is allowed. A network is self-routing if any connection is es-
tablished only by the addresses of its source and destination
regardless of other connections. A self-routing network can
be either blocking such as a Banyan network or nonblock-
ing such as a crossbar.

In a switching network, when more than one input re-
quests to be connected with the same output, output con-
tention occurs. Output contentions can be resolved by
switch scheduling. For a set of connection requests without
output contentions, the process of establishing conflict-free
connection paths to satisfy these requests is called switch
routing. A switch routing (or simply, routing) algorithm
is needed to find these paths. Once a set of conflict-free
paths is found, the SEs on these paths can be properly set
up. Routing algorithms play a more fundamental role in
WSNB and RNB networks since the nonblockingness de-
pends on them. For SNB networks, routing algorithms tend
to be overlooked, since a conflict-free path is always guar-
anteed for the connection from any idle input to any idle
output without rerouting the existing connections. An ef-
ficient routing algorithm, however, is still needed to find
such a conflict-free path for each connection request. Any
routing algorithm requiring more than linear time would be
considered too slow. Thus, finding efficient algorithms to
speed up routing process is crucial for high-speed switch-
ing networks.

Recently, a class of multistage nonblocking switch-
ing networks has been proposed. In this class each net-
work, denoted by ���� �� �� ��, has relatively low hard-
ware cost and short connection diameter, ������ ��� �
and ����� � respectively, in terms of the number of SEs1.
A ���� �� �� ��, � � ��� ��, is constructed by hori-
zontally concatenating ��� ��� � �� extra stages to an
� � � Banyan-type network and vertically stacking �
copies of the extended Banyan. Networks ���� �� �� ��
and ���� �� �� �� are similar in structure, but the latter does
not allow any two connection paths through the same SE
while the former does. ���� �� �� �� and ���� �� �� �� are
suitable for electronic and optical implementation, respec-
tively. It has been shown that ���� �� �� �� can be SNB,
WNB and RNB with certain values of � and � for given �

1In this paper,� � �� (� � ���) and all logarithms are in base 2.

and � [8, 9, 12, 17, 18]. Routing � connections sequen-
tially in ���� �� �� �� needs ��� ��� � time. When the
number of connection requests becomes larger, the rout-
ing time complexity is greater than ��� �. To the best
of our knowledge, except for some special cases such as
Banyan network (i.e., ���� �� �� ��) and Benes network
(i.e., ���� ��� � �� �� ��), no effort of investigating faster
routing for the whole class of these networks has been re-
ported in the literature.

In this paper, by examining the connection capacity of
���� �� �� ��, we first model the routing problems for this
class of networks as weak and strong edge colorings of
bipartite graphs. Basing on our model, we propose fast
routing algorithms for ���� �� �� �� using parallel pro-
cessing techniques. We show that the presented parallel
routing algorithms can route � connections in ���� �
�� �� ��� � ��� � time for an RNB ���� �� �� �� and in
���� �� ��� � �� �� ��� time for an SNB ���� �� ��� ��.
Since �� �� � ��

�
� � and � � ��� , the proposed algo-

rithms can always set up ��� � connections in ������ �

time for RNB ���� �� �� �� and in ��
�
� ��� � time for

SNB ���� �� ��� ��.

2 Nonblocking Networks Based on Banyan
Networks

A class of multistage self-routing networks, Banyan-type
networks, has received considerable attention. A network
belonging to this class has properties of short connection
diameter, unique connection path, and uniform modular-
ity, which are very attractive for constructing switching
networks. Several well-known networks, such as Banyan,
Omega, Shuffle, and Baseline, belong to this class. It has
been shown that these networks are topologically equiva-
lent. In this paper, we use Baseline network as the repre-
sentative of Banyan-type networks.

An � � � Baseline network, denoted by �	�� �, is
constructed recursively. A �	�	� is a 	� 	 SE. A �	�� �
consists of a switching stage of �
	 SEs, and a shuffle con-
nection, followed by a stack of two �	��
	�’s. Thus a
�	�� � has �
�� stages labeled by �� � � � � ��� from left to
right, and each stage has�
	 SEs labeled by �� � � � � �
	��
from top to bottom. Each SE has two inputs, each named
upper input or lower input if it is above or under the other,
and two outputs, each named upper output or lower out-
put similarly. The upper and lower outputs of each SE in
stage � are connected with two �	��
	����’s, named up-
per subnetwork and lower subnetwork, respectively. The
� links interconnecting two adjacent stages � and � � �
are called output links of stage � and input links of stage
� � �. The input (resp. output) links in the first (resp. last)
stage of �	�� � are connected with � inputs (resp. out-
puts) of �	�� �. To facilitate our discussions, the label of
each stage, link and SE is represented by a binary number.
Let ���� � � ��� be the binary representation of . We
use � to denote the integer that has the binary representa-
tion ���� � � ���� � ��. An example is shown in Fig.
2.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

000

001

010

011

100

101

110

111

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

000

001

010

011

100

101

110

111

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

I
N
P
U
T
S

O
U
T
P
U
T
S

STAGES

upper subnetwork BL(8)

lower subnetwork BL(8)

0 1 2 3

P0

P1

Figure 2. Self-routing connection paths ��
and �� in ������.

Self-routing in ���� � is decided by the destination of
each connection. If the �� � ��-th bit, ������, of the des-
tination equals to �, the input of the SE that the connection
path enters in stage � is connected to the SE’s upper output,
and otherwise (i.e., ������ � �) to the lower output. Since
two adjacent stages are connected by shuffle connection, the
unique path for each connection can be derived.

If Baseline network is used for photonic switching, it is a
blocking network since two connections may pass through
the same SE, which causes node conflict. Even if Baseline
network is used for electronic switching, it is still a blocking
network since two connections may try to pass through the
same input (resp. output) link, which causes input (resp.
output) link conflict. Fig. 2 shows two connection paths
�� from ���� to ���� and �� from ���� to ����. �� and
�� have the output link conflict in stage � and input link
conflict in stage � because both two active inputs of SE �
in stage � intend to be connected with its lower output and
both active outputs of SE 	 in stage � intend to be connected
with its upper input; they have node conflicts at SEs � and
	 in stages � and �, respectively.

Although a Baseline network is blocking, a nonblocking
network can be built by extending it in three ways: horizon-
tal concatenation of extra stages to the back of a Baseline
network, vertical stacking of multiple copies of a Baseline
network, and the combination of both horizontal concatena-
tion and vertical stacking [8, 9, 17, 18]. In the general ap-
proach, a network is constructed by concatenating the mir-
ror image of the first ��� �� stages of���� � to the back of
a ���� �, then vertically making 	 copies of the extended
���� � (each copy is called a plane), and finally connect-
ing the inputs (resp. outputs) in the first (resp. last) stage to
� �� 	 splitters (resp. 	� � combiners). Specifically, the
�-th input (resp. output) of the
-th plane is connected with
the
-th output (resp. input) of the �-th � � 	 splitter (resp.
	 � � combiner), which is connected with the �-th input
(resp. output) of this network. We denote a network con-
structed in this way by ���� �� 	� ��, where � is crosstalk
factor. That is, � � � if the network has no crosstalk-

free constraint and � � � if the network has crosstalk-
free constraint. Clearly, ���� �� �� �� is a Baseline net-
work and ����� � �� �� �� is a Benes network [1]. In
���� �� �� ��, a subnetwork, denoted by ���� �� ���� ��
(� � � � ���) is defined as a ������
������� ��� �� ��
from stage � to stage �
����� �� �� � �. Fig. 3 shows
an example of ����� �� �� ��, which contains three planes
of ����� �� �� ��, and each ����� �� �� �� contains two ex-
tra stages.

I
N
P
U
T
S

O
U
T
P
U
T
S

STAGES

2 extra stages3 planes

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0 1 2 3 4 5

Figure 3. A network ����� �� �� ��.

3 Graph Model

3.1 I/O Mapping Graphs

Let � and � be the sets of � inputs, denoted by
��� � � � � ����, and � outputs, denoted by ��� � � � � ����,
of ���� �� 	� �� respectively. For ���� �� 	� ��, a set of
� inputs (resp. outputs) is called the �-th modulo-� input
group (resp. modulo-� output group) if the inputs (resp.
outputs) in the set are congruent to �� � when the modulus
is ��� ��� � � � � �). Let � � � ��� � be an �� mapping
that indicates connections from � to �. If there is a con-
nection from �� to ��, then set ���� �
 and ����
� � �;
otherwise set ���� � ��. If
 �� ���� for any ��, then set
����
� � ��. We say that an input (resp. output, link, SE)
is active if it is on a connection path, and idle otherwise. An
I/O mapping from � to � is one-to-one if each �� is mapped
to at most one �� and ���� �� ��
� for any � ��
. In this
paper, all I/O mappings are one-to-one and all connections
belong to a one-to-one I/O mapping.

If a connection path does not have any link (resp. node)
conflict with other connection paths, it is called a link
conflict-free (resp. node conflict-free) path. Clearly node
conflict-free path is also link conflict-free, but the con-
verse is not true. If a set of connections can be set up by
conflict-free paths in ���� �� �� ��, these connections are

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

called feasible connections of ���� �� �� ��. Our goal is to
quickly set up � link (resp. node) conflict-free paths for
� connections of any I/O mapping in ���� �� �� �� (resp.
���� �� �� ��). To achieve this goal, we usually decompose
a set of connections into disjoint subsets, and route each
subset in one plane of ���� �� �� �� so that each subset is
feasible for its assigned plane.

Given any I/O mapping with � connections for
���� �� �� ��, we construct a graph ������ ��, named I/O
mapping graph, as follows. The vertex set consists of two
parts, 	� and 	�. Each part has �
� vertices, i.e., each
modulo-� input (resp. output) group is represented by a ver-
tex in 	� (resp. 	�). There is an edge between vertex ��
��
in 	� and vertex ��
�� in 	� if � � ���. Thus, ������ ��
is a bipartite graph with �
� vertices in each of 	� and 	�
and � edges, where at most � edges are incident at any ver-
tex. Thus, the degree of ������ ��, the maximum num-
ber of edges incident at a vertex, equals to �. Since there
may be more than one connection from a modulo-� input
group to the same modulo-� output group,������ �� may
have parallel edges between two vertices. However, there is
a one-to-one correspondence between active inputs/outputs
in the I/O mapping and edges in the I/O mapping graph, and
thus, we can label each edge by its corresponding input. An
edge � is called the left edge (resp. right edge) of edge � if
� � �� (resp. ��� � ���). Any edge has at most one left
edge and at most one right edge in ������ ��. Two edges
� and � are called neighboring edges if � is the left or right
edge of �. We define a component of ������ �� as fol-
lows: two edges � and � belong to the same component if
and only if there is a sequence of edges � � ��� � � � � �� � �
such that �� and ����, � � � � ���, are neighboring edges.
If every edge in a component has two neighboring edges, it
is called a closed component; otherwise it is called an open
component. It is easy to verify that each edge is in exactly
one component, and thus, components are edge disjoint in
������ ��. In Fig. 4, (a) shows an I/O mapping with
�� inputs, 25 of which are active; (b) shows the I/O map-
ping graph ����� ��� 	� of (a), where each of 	� and 	� of
����� ��� 	�has
 vertices and each vertex includes 	 inputs
(resp. outputs) belonging to the same modulo-	 input (resp.
output) group; (c) shows all components of ����� ��� 	� in
(b).

3.2 Graph Coloring and Nonblockingness

If we set up connections in ���� �� �� �� one by one
by sequential algorithms, the time complexity for estab-
lishing � connections is ��� � ��� � ��� since it takes
������� time to set up one connection. For a large num-
ber of connections, the time required is more than ��� �,
which is not acceptable for real-time applications. Paral-
lel processing techniques can be used to speed up rout-
ing in ���� �� �� ��. We say that two connections share
a modulo-� input (resp. output) group if their sources
(resp. destinations) are in the same modulo-� input (resp.
output) group. Let us study the connection capability of
���� �� �� �� first.

Lemma 1 For any connection set � of ���� �� �� ��, if no
two connections in � share any modulo-� input (resp. out-
put) group, then the connection paths for � satisfy the fol-
lowing conditions: (i) they are node conflict-free in the first
(resp. last) � � stages; (ii) they are input link conflict-free
in the first � � � � (resp. last ��) stages and output link
conflict-free in the first �� (resp. last � � � �) stages.

Lemma 2 For any pair of input and output in
���� �� �� ��, there are �� paths connecting them.

It is easy to verify that Lemmas 1 and 2 are true ac-
cording to the topology of ���� � (refer to [12] for formal
proofs). Using the above two lemmas, the following claim
can be easily derived from the results of [12].

Lemma 3 Given a connection set � of ���� �� �� ��, if
any two connections in � do not share any modulo-
��

�����

�
� input group and also do not share any

modulo-��
�����

�
� output group, then � is feasible for

���� �� �� ��.

By Lemma 3, if we assign the connections of
���� �� �� �� with sources (resp. destinations) passing
through the same modulo-� input (resp. output) group
to different planes, then we can route connections in
���� �� �� �� without conflict. Thus, in order to set up
conflict-free connections in ���� �� �� ��, we first need
to determine which plane to be used for each connection.
By constructing an I/O mapping graph ������ �� with
� � ��

�����

�
�, we can reduce the problem of routing �

connections in ���� �� �� �� to the following two graph
coloring problems:
Weak Edge Coloring Problem (WEC problem): Given an
I/O mapping graph ������ �� with ���� �� colored
edges, color � edges with a set of colors such that no two
edges with the same color are incident at the same vertex of
������ �� with the changing of the colors of the �� col-
ored edges allowed. If we can find a weak edge coloring of
������ �� using �� different colors, we call this coloring
a (weak)2 ��-edge coloring of ������ ��.
Strong Edge Coloring Problem (SEC problem): Given an
I/O mapping graph ������ �� with ���� �� colored
edges, color � � �� uncolored edges with a set of colors
such that no two edges with the same color are incident at
the same vertex of ������ �� without changing the colors
of the �� colored edges. If we can find a strong edge col-
oring of ������ �� using �� different colors, we call this
coloring a strong ��-edge coloring of ������ ��.

If we think the colored (resp. uncolored) edges in
������ �� as the existing (resp. new) connections in
���� �� �� ��, a solution to the ��� problem is a plane
assignment for routing in an RNB network since we can
reroute existing connections in such a network, and a so-
lution to the ��� problem is a plane assignment for rout-
ing in an SNB network since rerouting existing connections
is not allowed in such a network. Clearly, for the same
������ ��, �� � ��.

2The definition of weak edge coloring is the same as the definition of
edge coloring in graph theory. Thus we omit “weak” in the following of
paper.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

4 Routing for Rearrangeable Nonblocking
Networks

4.1 Rearrangeable Nonblockingness

Lemma 4 If � � �
������

�
�, then ���� �� �� �� is rear-

rangeable nonblocking.

The above claim is implied by the results of [12]. It is
important to note that the minimum value of � in Lemma 4
equals to the value of � in Lemma 3, where � is the num-
ber of ���� �� �� �� planes required for���� �� �� �� to be
rearrangeable nonblocking.

By Lemmas 3 and 4, if we assign the connections (in-
cluding existing and new connections) sharing the same
modulo-� input/output group to different planes, the con-
nections are feasible for every assigned plane. Then, the
routing can be completed by setting up conflict-free con-
nection paths within each plane.

Lemma 5 Every bipartite graph � has a �-edge coloring,
where � is the degree of �.

By Lemma 5 (see a proof in [2]), if we set � � ��
�����

�
�

in ������ ��, the plane assignments for a set of connec-
tions in RNB ���� �� �� �� can be solved by finding a �-
edge coloring of������ �� since the degree of������ ��
equals to �.

4.2 Algorithm for Balanced �-Coloring of
������ ��

In order to solve 	
� problem efficiently, we present
an algorithm for a problem, named balanced 2-coloring
problem: given an I/O mapping graph ������ ��, color
its edges with � colors so that every vertex is adjacent to at
most ��� edges with one color and ��� with the other.

We choose to present our parallel algorithms for a com-
pletely connected multiprocessor system since any algo-
rithm for this parallel computing model can be easily trans-
formed to algorithms on more realistic multiprocessor sys-
tems. A completely connected multiprocessor system of
size � consists of a set of processing elements (PEs)
�,
� � � � � ��, connected in such a way that there is a con-
nection between every pair of PEs. We assume that each PE
can communicate with at most one PE during a communi-
cation step.

Initially, each PE� reads ���� from input �, sets value of
��� in PE���� as �, and then performs the following two
steps.

Step 1. Divide the I/O mapping graph ������ �� into
a set of components. This step can be done by each edge
finding its left edge �� and right edge ���������.

Step 2. Color components with two colors, red and blue,
so that neighboring edges in each component have different
colors.

Each component has two specific representatives, simply
referred to Rep’s. (There is an exception: for the component

with length of �, there is only one Rep, which is itself.) For
closed and open components, the Rep’s are defined differ-
ently. For a closed component, we define two edges with
the minimum labels as two Rep’s; for an open component,
if an edge � has no left edge or �’s left edge has no right
edge, � is defined as one Rep. Fig. 4(c) shows the Rep’s of
all possible types of components, where the Rep’s of each
component are marked as dark lines and edges are labeled
by their corresponding inputs Step 2 can be done by col-
oring edges with the Rep’s as references using the pointer
jumping technique in [7]. At the beginning, each edge sets
its pointer to point to the right edge of its left edge if it exists
and to itself otherwise. By doing so, for a closed component
or an open component with more than one edge, two dis-
joint directed cycles or paths are formed, each containing a
Rep. For an open component, furthermore, the end pointer
of every directed path is pointing to one of the Rep’s. For
example, Fig. 4(d) shows that the directed cycles and paths
formed from the components of Fig. 4(c). Then, by per-
forming ��	������ times of parallel pointer jumping, each
edge finds the Rep belonging to the same directed cycle or
path. Finally, each edge can be colored by comparing the
value of the Rep found by itself with that by its neighbor.
That is, if the value of the Rep founded by an edge is no
larger than its neighbor’s, color the edge with red; and oth-
erwise color it with blue. Fig. 4(b) shows a balanced �-
coloring of an I/O mapping graph of Fig. 4(c), where solid
lines are colored as red and dashed lines are colored as blue.

Theorem 1 A balanced �-coloring of any ������ �� can
be found in ���	�� time using a completely connected
multiprocessor system of � PEs.

Proof. Given an I/O mapping graph ������ ��, Step 1 can
be done in ���� time using a completely connected multi-
processor system of � PEs. In Step 2, since the length of
each directed cycle or path is at most �����, each edge can
find a Rep by ��	������ times of pointer jumping. Clearly,
all edges in the same directed cycle or path are colored with
the same color since they find the same Rep. The pointer
initialization implies that each edge and its neighboring
edge are in different directed cycle or path, and thus, they
have different colors. By the definition of left/right edge,
there are no more than ��� pairs of neighboring edges inci-
dent at any vertex of ���� �� ��. Thus, the coloring of all
components compose a balanced �-coloring of ���� �� ��.
Therefore, a balanced �-coloring of any ������ �� can be
found in ���	�� time. �

4.3 Algorithm for �-Edge Coloring of ������ ��

Based on the balanced 2-coloring algorithm, a	
� so-
lution to any I/O mapping graph ������ �� with no more
than � colors can be found as follows. Initially, we remove
all colors for �� already colored edges. In initial step (i.e.,
step 0), we find a balanced 2-coloring of ������ �� using
colors � and �, and let �� and �� be the graphs induced
by the edges with colors � and �, respectively. In step 1,
if the degree of �� and/or �� is no less than �, we find a
balanced 2-coloring for �� using colors �� and ��, and/or

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

13
12
11
10
9

7

5
4

2
1
0

25
-1
15
17
-1
29
27

24

14

8

6

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15

21

6

(i)π
21 VV

(a)

i

10

30
23
28
1
-1
-1
20
9
16
5
22
12
26
11

-1
-1
4
0
-1

3 3
2
1
0

7
6
5
4
3
2
1
0

31
30
29
28

25

23
22

4
23

15

31

23

22

15

14

22

31

14

26
27

G(32, 25, 8)

(b) (d)

24

7
6
5

21

24

23
22
21
20
19
18
17
16

15
14
13
12
11
10
9
8

3

7

25

20
19
18
17
16

15
14
13
12
11
10
9
8

31
30
29
28
27
26

11

19

18

3

26

19
18

3

12

21

20

10

(c)

10
11

21
20

8

(i) 1 closed component

1

9

26

24

1

24

0

8

9

25

0

25

7

7

29

28

13

4

29
28

13
12

4

(ii) 5 open components

Figure 4. Finding a balanced �-coloring (a) An I/O mapping (b) A balanced �-coloring of an I/O mapping
graph ����� ��� �� (c) A set of components (d) Pointer initialization for pointer jumping.

find a balanced 2-coloring for �� using colors �� and ��.
This process is recursively continued in a binary tree fash-
ion until a solution to WEC is reached. More formally, in
each recursive step �, � � � � �	 �, we find a balanced
2-coloring for each graph �� using colors �� and �� (i.e.,
concatenate � or � with �) if the degree of �� is no less
than �, where � is a binary representation of an integer in
��� �� � � �� �� � �� and the color of ����� in step � � �.

Theorem 2 For any I/O mapping graph ������ ��, a �-
edge coloring can be found in ���	 � � �	�� time using a
completely connected multiprocessor system of � PEs.

Proof. There are �(� �) edges in ������ ��. Since
�
 ��, we can prove the theorem by an induction on 	. If
	
 �, it is true since a balanced �-coloring is a �-edge col-
oring by Theorem 1. Assume that for any 	
 � � �, the
theorem holds. Now, we prove that the theorem holds for
	
 �. First, we find a balanced �-coloring of������ ��,
which can be done in ���	�� time by Theorem 1. Let ��

and �� be the graphs induced by the edges of two differ-
ent colors from this balanced �-coloring. By the definition
of balanced �-coloring, we know that ����� � �� and
����� � ��. By the hypothesis, we can find a ����-
edge coloring for each of �� and �� in ���	 � �� � �	��
time on a completely connected multiprocessor system of
������� and ������� PEs, respectively, which can be car-
ried out simultaneously since ����� � �����
 �. The
����-edge colorings of �� and �� compose a �-edge col-
oring of������ ��, which takes total ��	 � �	�� time for
a completely connected multiprocessor system of � PEs.
�

4.4 Parallel Routing in a Plane

We have shown how to assign a plane to each connection
in an RNB ���� �� �� ��. In this section, we show how
connections are routed within each plane.

Lemma 6 Let � be a set of feasible connections for
���� �� �� ��. If each connection in � is set up in the
first and last � stages such that the output link in stage �
and the input link in stage �	� � � on each connection are
connected with the same subnetwork ���� �� ������ ��,
� � � � � � �, then � can be routed by self-routing in the
middle �	� � � stages.

Proof. By the topology of ���� �� �� ��, we know that
each connection must pass through the same subnetwork
���� �� ���� ��, � � � � �	� � �. Since the middle
�	� � � stages of ���� �� �� �� consists of �� Baseline
network ��� �

��
�, this lemma is true. �

Theorem 3 Let � be a set of � feasible connections
of ���� �� �� ��. Then � can be correctly set up in
��� �	� � �	� � time using a completely connected multi-
processor system of � PEs.

Proof. By Lemma 6, what we only need to do is to set
up � correctly in the first and last � stages for � � �.
By the topology of ���� �� �� ��, we know that the out-
put link in stage � and the input link in stage �	� � � on
each connection are connected with the same subnetwork
���� �� ������ ��, � � � � � � �. Thus, we need to
decide which subnetwork to be used for each connection

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

since there are �
� ���� �� ����� ��’s. This can be reduced

to a �-edge coloring of a bipartite graph with degree of �.
For each subnetwork ���� �� ����� ��, � � � � � � �, we
construct an I/O mapping graph ���������� ��, where ��

is the number of connections passing through it. We color
the edges of ���������� �� with two different colors and
assign the connections (edges) with the same color to pass
through the same subnetwork ���� �� ������� ��. Specifi-
cally, in each step �, � � � � �� �, we run 	-edge coloring
algorithm for �� ���������� ��’s with 	 � �. By Theorem
2, each step can be done in
����� time. Thus, the time to
set up � feasible connections in the first and last � stages
is
�� ����. By Lemma 6, we can set up the connections
in the middle ��� � � stages by self-routing, which takes
��� � � time. Therefore, the total time to route � feasible
connections of ���� �� �� �� is
�� ��� � ��� � using a
completely connected multiprocessor system of � PEs. �

4.5 Overall Routing Performance

Theorem 4 For any RNB ���� �� �� �� , we can correctly
route � connections (including existing and new connec-
tions) in
���� �� �� ��� � ��� � time using a completely
connected multiprocessor system of � PEs.

Proof. By Theorem 2, we can find a �-edge coloring of the
I/O mapping graph ������ �� in
��� � ���� time. By
Lemma 3, we assign the connections with the same color to
the same plane. In each plane ���� �� �� ��, by Theorem
3, we can set up the connections in
�� ��� � ��� � time.
Thus, the total time complexity is
������ �� ������� �.
�

By Theorem 4, the routing time for setting up
��� con-
nections in an RNB ���� �� �� �� is improved to
��� �
�� �� ��� � ��� � from 	�� �
�� �. By Lemma 4, for
an RNB ���� �� �� �� and an RNB ����� � �� �� ��, the
minimum number of planes of Baseline network and Benes
network, equals to ��

���

�
� and ��

���

�
�, respectively. Con-

sequently, we can route connections in
����� � time for
both ���� �� �� �� and ����� � �� �� ��. For the RNB
����� � �� �� ��, which is the electronic Benes network,
this performance is the same as the best known results re-
ported in [11, 13].

5 Routing for Strictly Nonblocking Networks

5.1 Strict Nonblockingness

The following lemma can be easily derived from the re-
sults of [18].

Lemma 7 If

� �

�
�� � ���� �

���

� ��
�
� �

�
��� �� for even �� �

�� � ���� �
�����

� �� � �

�
��� �� for odd �� �

then ���� �� �� �� is strictly nonblocking.

For an SNB network, we can set up new connections (as
long as these connections form an I/O mapping from idle
inputs to idle outputs) without disturbing the existing ones;
however, this routing problem is by no means to be simpler
than that in an RNB network when we need to set up the
new connections simultaneously. In this section, we present
a parallel algorithm based on graph coloring to speed up
routing time.

Based on the discussions in Section 3, we know that the
routing problem for an SNB ���� �� �� �� can be solved
by finding a strong edge coloring of the I/O mapping graph
������ 	� with 	 � ��

�����

�
�.

Lemma 8 Any graph � has a strong ���� ��-edge color-
ing, where � is the degree of �.

Proof. Consider coloring edges in an arbitrary order. Since
each edge in � is adjacent to at most �� � � edges, any
uncolored edge in � can always be assigned a color so that
the total number of colors used is no more than ��� �. �

We consider a subclass of SNB networks,���� �� ��� ��
with �� � ��

���

�
��� � �. By Lemma 7, we know that

���� �� ��� �� is an SNB network. Since each plane of
���� �� ��� �� is a Baseline network, the routing of con-
nections in any plane can be done by self-routing. Thus,
the problem of setting up connections in ���� �� ��� �� is
reduced to finding a plane for each new connection so that
all connections, including existing ones, are conflict-free.
By Lemmas 3 and 8, this can be done by finding a strong
��	 � ��-edge coloring for ������ 	� of ���� �� ��� ��
with �� existing connections and � � �� new connec-
tions, where 	 � ��

���

�
�. In the next subsection, we present

an algorithm to find a strong ��	 � ��-edge coloring of
������ 	�.

5.2 Algorithm for Strong ��	 � ��-Edge Coloring
of ������ 	�

A matching is defined as a set of edges that does not
contain any adjacent edges. Conceptually, a strong ��	���-
edge coloring of ������ 	� with ��� �� colored edges
can be done in the following two steps.

Step 1: find a set of matchings in ����� ���� 	�;
Step 2: color matchings one by one without changing the

existing colors.
It is easy to see that the edges with the same color com-

pose a matching for any 	-edge coloring of ����� �
��� 	�. Thus, Step 1 can be done by finding a 	-edge color-
ing of ����� ���� 	�, which divides� ��� uncolored
edges (corresponding to new connections) into at most 	
matchings. By Theorem 2, it takes
��� 	 � ���� � ����
time using a completely connected multiprocessor system
of � PEs. In ������ 	�, each edge is adjacent to at most
�	 � � edges, and hence, there are at most �	 � � colored
edges adjacent to each edge in a matching. Thus we can
color every edge in the matching by one of the unused col-
ors. This can be done by parallel searching for a free color
among �	 � � colors, which takes
��� 	� time. Since no

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

two edges are adjacent in a matching, by coloring � match-
ings one by one in ������ ��, a strong ��� � ��-edge col-
oring of ������ �� is found. Therefore, we have the fol-
lowing claim.

Theorem 5 For any I/O mapping graph ������ �� with
���� �� colored edges, a strong ��� � ��-edge coloring
can be found in ���� � ���� � ��� � � �� �� time using a
completely connected multiprocessor system of � PEs.

5.3 Performance Analysis

Theorem 6 For a strictly nonblocking network
���� �� �� 	� with � � ��

���

�
��� � �, we can estab-

lish � connections from � idle inputs to � idle outputs
in ����� ��� � � �� �� time using a completely connected
multiprocessor system of � PEs.

Proof. In ������ ��, we assume the edges corresponding
to the existing connections in the
-th plane of���� �� �� 	�
have been colored with color
 and the edges correspond-
ing to the new connections have not been colored yet. By
Theorem 5, we can find a strong ��� � ��-edge coloring
of ������ �� in ���� � ��� � � ���� time using a com-
pletely connected multiprocessor system of � PEs. We as-
sign each new connection with color
 to the
-th plane of
���� �� �� 	�. By Lemma3, these new connections can be
set up by self-routing in ����� � time. �

By Lemma 7, we can derive the minimum number of
planes, ����, in ���� �� �� 	�.

Compared with ���� �� ����� 	�, the hardware redun-
dancy of ���� �� ��� 	� is shown as follows.

�� � ���� �

���
��

�� if 	 � � and � is odd�
���� if 	 � � and � is even

�� if 	 � � and � is even�
����� if 	 � � and � is odd

The hardware cost of ���� �� ��� 	�, in terms of the
number of SEs, is higher than that of ���� �� ����� 	� in
half of the cases, but both have the same hardware com-
plexity of 	����� ��� �. The routing time for setting
up ��� � connections, however, is improved to sublinear
��
�
� ��� � from
�� ��� �.

6 Concluding Remarks

One major contribution of this paper is the design and
analysis of parallel routing algorithms for a class of non-
blocking switching networks, ���� � �� 	�’s. Although
the assumed parallel machine model is a completely con-
nected multiprocessor system of � PEs, the proposed al-
gorithms can be transformed to algorithms for more realis-
tic parallel computing models. The pointer jumping and
binary searching, which dominate the complexity of the
proposed algorithms, can be reduced to sorting on realistic
parallel computing structures. It is interesting to note that
the sorting can be implemented in Banyan-type network in

������ � time [10]. Thus the proposed algorithms can set
up connections in ���� � �� 	� with a slow-down factor
������ � on a Banyan-type network, whose complexity is
no larger than one plane of ���� � �� 	�.

References

[1] V.E. Benes, Mathematical Theory of Connecting Networks
and Telephone Traffic, Academic Press, New York, 1965.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applica-
tions, Elsevier North-Holland, 1976.

[3] J. Duato, S. Yalamanchili and L. Ni, Interconnection Net-
works - A Engineering Approach, Morgan Kaufmann, 2003.

[4] H. Hinton, “A Non-Blocking Optical Interconnection Net-
work Using Directional Couplers”, Proc. of IEEE Global
Telecommunications Conference, pp. 885-889, Nov. 1984.

[5] D.K. Hunter, P.J. Legg, and I. Andonovic, “Architecture
for Large Dilated Optical TDM Switching Networks”, IEE
Proc. on Optoelectronics, vol. 140, no. 5, pp. 337-343, Oct.
1993.

[6] F.K. Hwang, The Mathematical Theory of Nonblocking
Switching Networks, World Scientific, 1998.

[7] J. Jaja, An Introduction to Parallel Algorithms, Addison-
Wesley, 1992.

[8] C.T. Lea, “Multi-log2N Networks and Their Applications in
High-Speed Electronic and Photonic Switching Systems”,
IEEE Trans. on Communications, vol. 38, no. 10, pp. 1740-
1749, Oct. 1990.

[9] C.T. Lea and D.J. Shyy, “Tradeoff of Horizontal Decomposi-
tion Versus Vertical Stacking in Rearrangeable Nonblocking
Networks”, IEEE Trans. on Communications, pp. 899-904,
vol. 39, no. 6, June 1991.

[10] F.T. Leighton, Introduction to Parallel Algorithms and Ar-
chitectures: Arrays � Trees �Hypercubes, Morgan Kaufmann
Publishers, 1992.

[11] G.F. Lev, N. Pippenger and L.G. Valiant, “A Fast Parallel Al-
gorithm for Routing in Permutation Networks”, IEEE Trans.
on Computers, vol. 30, pp. 93-100, Feb. 1981.

[12] G. Maier and A. Pattavina, “Design of Photonic Rearrange-
able Networks with Zero First-Order Switching-Element-
Crosstalk”, IEEE Trans. on Communications, vol. 49, no.
7, pp. 1268-1279, Jul. 2001.

[13] N. Nassimi and S. Sahni, “Parallel Algorithms to Set Up the
Benes Permutation Network”, IEEE Trans. on Computers,
vol. 31, no. 2, pp. 148-154, Feb. 1982.

[14] K. Padmanabhan and A. Netravali, “Dilated Network for
Photonic Switching”, IEEE Trans. on Communications, vol.
COM-35, no. 12, pp. 1357-1365, Dec. 1987.

[15] R. Ramaswami and K. Sivarajan, Optical Networks: A Prac-
tical Perspective, second edition, Morgan Kaufmann, 2001.

[16] F.M. Suliman, A.B. Mohammad, and K. Seman, “A Space
Dilated Lightwave Network-a New Approach”, Proc. of
IEEE 10th International Conferenceon Telecommunications
(ICT 2003), vol. 2, pp. 1675-1679, 2003.

[17] M. Vaez and C.T. Lea, “Wide-Sense Nonblocking Banyan-
Type Switching Systems Based on Directional Couplers”,
IEEE J. on Selected Areas in Communications, vol. 16, no.
7, pp. 1327-1332, Sep. 1998.

[18] M. Vaez and C.T. Lea, “Strictly Nonblocking Directional-
Coupler-Based Switching Networks under Crosstalk Con-
straint”, IEEE Trans. on Communications, vol. 48, no. 2, pp.
316-323, Feb. 2000.

[19] J.E. Watson et al., “A Low-Voltage �� � Ti:LiNbO� Switch
with a Dilated Benes Architecture,” IEEE J. of Lightwave
Technology, vol. 8, pp. 794-800, May 1990.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

