
1

Message Scheduling on a Wormhole-Switched
Linear Client-Server Network

Bing Yang
�
, Ashwin Gumaste

�
, Enyue Lu � and S. Q. Zheng �

�
Cisco Systems, 2200 East President George Bush Highway, Richardson, TX 75083-0688, USA�

School of Information Technology, Indian Institute of Technology, Bombay, India�
Mathematics and Computer Science Department, Salisbury University, Salisbury, MD 21801, USA�

Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688, USA

Abstract—The advantage of wormhole switching in
interconnection networks is its distance insensitivity of
communication latency under light traffic. However, this
property vanishes when traffic is heavy. We consider the
performance of a linear wormhole-switched network used
as a real-time client-server network. Messages generated
by client hosts are periodically transmitted to a central
server within a predicatable delivery time. We present two
algorithms for generating feasible message transmission
schedules and compare their performances. It is shown
that trade-off exists between quality of schedules and the
network utilization. Several open problems are posed.

Index Terms— interconnection network, real-time ap-
plication, wormhole switching, pipelining, client-server
computing, scheduling, performance evaluation

I. INTRODUCTION

Wormhole switching [5], [6] is an efficient switching
method for communication in interconnection networks
of multiprocessor parallel computing systems. For light
traffic, the latency of wormhole-switched communica-
tion is distance insensitive due to tight but distributed
synchronization of pipelined transmission of small data
units (called flow control units or simply flits). Exten-
sive research has been conducted on various aspects
of wormhole switching. Several wormhole-switched in-
terconnection networks have been implemented. These
include Intel Cavallino [4], Network Design Frame [8],
Cray T3D [14] and T3E [13], [15], Reliable Router
[7], SGI SPIDER [11], Ariadne [2], and IBM SP2 [16].
These interconnection networks have regular topologies
such as � -ary 	 -cubes (including tori and hypercubes)
and meshes. Wormhole-switched routers and switches
for constructing networks of workstations (NOWs) and
system area networks (SANs) of arbitrary topologies,
such as Myrinet [3] and ServerNet [12], have been also
made available.

However, wormhole switching, as any other
packet/cell switching methods, manifests of
unpredictability under heavy traffic. One major
problem is the possibility of costly deadlock. Various
deadlock avoidance and prevention techniques based on
virtual channels have been proposed and implemented
[9]. Deadlock detection and recovery methods have
also been proposed (e.g. [1]). Another problem is the
unpredictable performance under heavy traffic due to
non-deadlock blocking. This problem has not been
rigorously investigated, and it is the subject addressed
by this paper.

We consider a wormhole-switched linear network used
in a real-time application domain. We choose a linear
interconnection structure for the reason that it is the
simplest structure and the results obtained may be gener-
alized to dealing with more complicated structures. Also,
interconnection networks of regular structures contain
multiple linear substructures and the results obtained
for linear network may be directly applied to such sub-
networks. The application domain under consideration
is real-time client-server computing with periodic client
requests. We study the relationship among client message
length, m period, and deliver time, and client locations.
We show that under heavy traffic, client message peri-
ods and deliver times are message length sensitive and
distance sensitive. That is, message periods and deliver
times depend on message lengths and the locations
where messages are originated. We provide two message
scheduling algorithms and compare their performances.
The first has a greedy feature and tends to have high
network utilization, and larger message periods and
deliver times. The second algorithm is less aggressive,
resulting lower network utilization but much smaller
message periods and deliver times. Our results have
two implications. First, for some real-time applications
suitable message schedules can be obtained by careful

2

design. Second, wormhole-switched networks may have
severe limitations for certain real-time applications. We
conclude that, for real-time applications with heavy
periodic traffic, higher network utilization does not imply
better performance, and message communication must be
carefully scheduled to achieve desired performance.

This paper is organized as follows. In the next section,
we introduce the wormhole-switched linear client-server
network, its operation mode and parameters, and some
definitions to be used in the analysis. In Section III,
we present a simple message schedule called greedy
schedule. In Section IV, we present an improved message
schedule called conservative schedule. In Section V, we
compare the performances of the two schedules, explain
the implications of this comparison, and point out related
open problems.

II. WORMHOLE-SWITCHED LINEAR CLIENT-SERVER

NETWORK

A linear whormhole-switched client-server network is
a network consisting of � client hosts ��� , �����	�
� ,
that are connected as a linear array. Each ��� has an
interface connecting it to the input ��� of a wormhole-
switched ����� switch � � . The output of � � , denoted by� � , is connected to the input ������ � of ����� � . The output�

� of � � , which is considered as the network output,
is connected to the central server. Figure 1 shows the
configuration of this structure. A client message sent
from ��� to the network output has to traverse switches
����������� � ������� �!� � to reach the output. We assume that all
switches have a small buffer space for one flit.

Sn-1 S1S2S3
Sn

Hn
Hn-1 H3 H2 H1

Output

Fig. 1. A simple network

Messages sent from clients to the server (network out-
put) are real-time periodic messages. A periodic message
from �"� is denoted as #$�&%('!)*�+�!,-�.�!/0�21 , where)3� , ,4� and
/5� are the period, message delay time at any switch on
the way to the network output, and the sufficient message
deliver time (an upper bound) for the message to reach
the network output starting from the time its first bit is
injected into the network to the time its last bit reaches
the network output. All messages from � � have the same
) � , , � and / � . By the nature of wormhole switching, , � is
proportional to the length of #6� . We assume that when
two messages arrive at the same switch at the same

time, the message from an upstream (left) client host
has the higher priority of owning the switch, meaning
that it has the higher priority to go through the switch.
To make this linear client-server network complete, we
may need another linear wormhole-switched network in
reversed direction to send the results computed by the
central server back to clients. Assume that the response
to each client message can be computed by the central
server in constant time in the first-come-first-serve order,
and the response message for client message #6�7%
'!)*�+�!,-�.�!/0�21 owns ,-� time to go through any switch. Then,
the response messages can be smoothly sent back to
client hosts in pipelined fashion in the order of their
corresponding client messages received by the server. In
Figure 1, the reverse linear wormhole-switched network
is not shown. One possible application of this network
is to use it as a wired sensor networks with client hosts
being sensors for monitoring and periodic reporting.
Clearly, for #$�8%9'�)*����,4�.��/5�:1 ,)*� and /5� are functions
of)<; , ,�; and /=; , �>�(?A@B� . A feasible schedule is a
specification of)3� s and /0� s for ���C�D�E� such that
periodic messages # � s can reach the network output
using period) � and the “deadline” / � can be met. The
problem we are concerning about is how to determine
)*� s and /0� s that are as small as possible. An implication
of this objective is minimizing the average value of)� s
and /5� s.

In what follows we present some notations and defi-
nitions to be used in the rest of the paper:

� � Host � .
� � Switch � .
#$� The periodic message from �"� : #��&%('!)3����,4�.��/5�21 .F4G� The blocking time for an # GIH �(JK�ML blocked at

switch �N� . This is the time that the blocked header
flit of an # G waits at the input port ���� of ��� .O � The maximum blocking time for an # GIH �PJQ�ML
blocked at switch �N� . That is,

O �R%�SUTWV*' F G� 1 .X�Y G� The time required for the header flit of an # GIH �ZJ
�ML to travel through switches � � ��� ��� � �������+�!� � , given
the header flit has already reached the input port � ��
of ��� .[�"� The least sufficient time required for the header
flit of an # GIH �PJQ�.L to travel through switches
�N��������� � �������\��� � , given the header flit has already
reached the input port � �� of ��� . That is,

[�"�]%^Z_<` ' X�Y G� 1 .
)ba-� The time required for an #6� to completely pass

through the network, given # � owns � � immediately
after its release.c �N� The least sufficient time for �"� to send an #$�
to completely pass through the network, given #d�

3

owns ��� immediately after its release. That is,c ���&% ^Z_<` '!)a4�M1 .

Clearly,����� ����
X+Y G� % F G��� F G��� � � F G��� � � ����� � F G

�)ba-� % ,4� � X�Y ���� �c ���9% ,4� � [����� �O � % c ���
(1)

Because the header flit of a message # G can only be
directly blocked by an #$� at switch ��� (� @ �), so the
last equation holds.

III. GREEDY MESSAGE SCHEDULES

By the definitions given in the last section, we can see
that in the worst case,

[�"��% O � � ����� � O
� . Then,

O �K% c �N�
% ,-� � H O ��� � � ����� � O

� L
% ,-� � H ,4��� � � [����� � L � H O ��� � � ����� � O

� L
% ,-� � ,4��� � � � H O ��� � � ����� � O

� L
% ,-� � ,4��� � � �5,4��� � ��� H O ���	� � ����� � O

� L
% �����
% , � � , ��� � � � � , ��� � � � � , ���
� ������� � ��� � , �

Since
O � %�, � � [� ��� � , we have

[�"�R% O �� ��� ,4�� � %�,-� � � � ,-��� � � ����� � � ��� � , � �
Hence, ����� ����

O � % ,4� ��� ��� �G���� � G ,4��� � � Gc ��� % ,4� � � ��� �G���� � G ,4��� � � G[���K% � ��� �G���� � G ,4��� G � (2)

Now, consider / � . Obviously, the worst case occurs
when an # � is blocked by a #�� H ^ J �ML at switch � ,
and # � is also blocked by a # G at each switch � G for

�Z@ � . Then,

/0��� H , � � [����� � L� ��� � � ��!#"%$'&)(+* � c ���� �,� � � �#!)"%$'&#(.-
% H , � � [����� � L � H ,4� � [����� � L
% , � � ,4� � � H [����� � L

% , � � ,4� � � H
��� �/
G���� �

G ,4��� G L

% ,�� �
��� �/
G���� �

G , ��� G �
As ^ can be any number greater than � , we have

/5�0� SUTWVG�1 � ' , G 1 �
��� �/
G���� H � ; ,4��� G L

Thus, if we let)3�&%�/0�R%�S�T=V G21 �.' , G 1 �3� ��� �G,�4� H � ; ,4��� G L ,
then each message can be delivered within time /I� .

We call the schedule satisfying

)3�R%�/0� % S�TWVG�1 � ' , G 1 �
��� �/
G,��� H � ; ,-��� G L (3)

a greedy schedule, because, according to it, every client
host tries to send messages as many as possible, except
occasionally giving chances to the messages at farther
locations without lossing any network bandwidth. In
what follows we show that we could not make any of
above /5� and)3� smaller, without increasing other / or)
values. Let , %�, � %�, � % �����W%�,25 , then

) � %�/ � % , � , � � � , � � � , � ����� � � ��� � ,
% � � ,

Then, the total network utilization is:6 % 6
� � 6 � � ����� � 6 5

% ,
�5, � ,

� � , � ����� � ,
� 5 ,

% �
� � �

� � ����� � �
� 57 �

Though the greedy schedule may cause long block-
ing time, it still has some benefits in addition to full
bandwidth utilization. It is very simple. After adding a
restriction on the size of longest messages allowed in
the network, the values of)3� and /0� are only related
to message lengths of the downstream hosts (which are
located closer to the network output). In the situation that
all messages have the same length, the values of) � s and
/0� only depend on the hosts’ positions on the network.
And in the real world, a message may not always be sent
in every period cycle. The blocking time for message
could be much smaller than

O � of Equation (2).

IV. CONSERVATIVE MESSAGE SCHEDULES

In the last section we showed that in the worst case
values of) � and / � are exponential numbers of � (� 98
power), which are very big numbers for for large � .
In this section, we present a scheduling algorithm with
reduced values of)*� and /0� and slightly smaller network
utilization. We notice that the hosts closer to the network
output contribute most blocking to messages. Since we
could not reduce any /0� or)3� for a host without increas-
ing the values of other hosts (proved in last section),
we could decrease the values of /I� and)*� of upstream
hosts by increasing the values of / � and) � of some
downstream hosts (their values are small anyway). The
new scheduling algorithm greatly reduces the values of
/0� and)3� for all but first two hosts.

4

Let �&� be the � th Fibonacci number. That is,

�&�&%
��� �� � � % �

� � % ��&��� � � �&��� � � J �
Define:

� H 	�L %�� � ,�� � ����� � ���I, � %
�/
� � �

� � ,�� �*�� � (4)

The following two lemmas are useful.
Lemma 1:

� H 	 � �5L %�� H 	 � ��L � � H 	�L � ,�� � �
Proof:

� H 	 � ��L � � H 	�L � , � � �
%

� � �/
� � �

� � , � �*�� � �
�/
� � �

� �., � �*�� � � , � � �
%

�/
� �4� � �� � , � ���� � �

�/
� � �

�&�2, � ���� � � , � � �
%

�/
� � �

H �&� � �&�� � L\, � �*�� � � � � , � � � � , � � �
%

�/
� � �

� �� � , � ���� � � , � � � � , � � �
%

� � �/
� � � � � , � �*��4� � , � � � � , � � �

%
� � �/
� � �

� � , � �*�� �
% � H 	�L

Lemma 2: ' � H 	�L�1 is a strictly increasing sequence.
Proof: Directly from Lemma 1.

Based on above two lemmas, we have the following
theorem.

Theorem 1: Each message #6�&% H)*�+�!,-�.�!/0��L can meet
the deadline if:�

)*� J S�T=V G21 �.' , G 1 � � H � � ��L
/ � % S�T=V G21 � ' , G 1 � � H �ML (5)

Proof: Let
X � be the period between release time

and receiving time (at the network output) of an # � .
Define � � %A) � � / � . Then,

��� J � H 	 � ��L � � H 	RL
% � H 	 � ��L � ,�� � � H
	 , ^Z^Z_ ��L

We use induction to prove that for any � ,� [���Q� � H �MLX � � / � �

When � % � ,
[� � % O

� % c � � % , � %B� H ��L , andX
� �Q, � � ^Z_<` G21 � ' , G 1 % / � . Hence, there exists a

�d�P� , for �R� � � ,
[��� � � H �.L and

X � � /5� . Now we
consider �&% � � � .

First, we prove that
[� G � � � � H � � ��L . Since[� G � � % c � G � �+� , G � � , we only need to prove that

)ba G � � � , G � � � � H � � ��L for every # G � � . Let # G � � be
a message released at time � G � � . It owns switch � G � �
immediately. We need to consider two cases.

Case 1: # G � � is not blocked at switch � G � � .
Then,

F G � �G � � %� and

)ba G � �)� , G � � % F G � �G � � � F G � �G � ����� � F G � ��
% F G � �G � ����� � F G � ��
% X�Y G � �G
� [� G
� � H �*L
� � H � � ��L H�	 , ^Z^Z_ �5L

Case 2: # G � � is blocked at switch � G � � by an # G � �
release at time � G � � .

There are two subcases.
Subcase 2.1: # G � � is not blocked at switch � .
Then,

F G � �G %� for # G � � and

)a G � � � , G � � � F G � �G � � � X�Y G � �G
�)ba G � � � [� G
� H , G � � � F G � �G � ����� � F G � �� L � [� G
% H , G � � � F G � �G � � � ����� � F G � �� L � [� G
% H , G � � � X�Y G � �G � � L � [� G
� H , G � � � [� G � � L � [� G
� , G � � � � H � � ��L � � H �*L
% � H � � ��L H
	 , ^Z^Z_ ��L

Subcase 2.2: # G � � is blocked at switch � G by an # G
released at time � G .

We show that # G � � will not be blocked at switch � G .
Since � G releases a message at � G , the next message
release time is

� G �) G %�� G � / G � � G �
As

X G � / G , at time � G � / G , # G has already passed
� G . So # G � � owns � G � � before or at time � G � / G . The
additional time for # G � � pass � G is

, G � � � X�Y G � �G � � � , G � � � [� G � �
� , G � � � � H � � ��L
@ � G

5

Hence, before the next # G release, # G � � has already
passed � G and # G � � owns switch � G . Hence # G � � will
not be blocked at switch � G . Thus,

)ba G � �)� , G � � � F G � �G � � � F G � �G � ����� � F G � ��
� F G � �G � � � � X�Y G � �G � �� O G � � � [� G � �
� , G � � � [� G � [� G � �
� , G � � � � H �*L � � H � � ��L
% � H � � ��L H
	 , ^Z^Z_ ��L

By now we have proved that
[� G � � �K� H � � ��L .

We proceed to prove that
X G � � � / G � � . Let # G � � be a

message released from � G � � at time � G � � . We need to
consider two cases.

Case 1: # G � � is not blocked by another message at
� G � � .

Then,

X G � � %A)ba G � � � , G � � � [� G
% , G � � � � H �*L
% � H � � ��L � � H � � ��L
@ / G � � �

Case 2: # G � � is blocked by a message # � H ^ J
� � ��L at � G � � , and #�� is blocked at switch ��� , � � � .

We have two subcases.
Subcase 2.1:

� @ � .
Clearly,
X G � � %)ba G � � � , � � X+Y � �

�)ba G � � � , � � [� �
�)ba G � � � ,2� � � H � L
� , G � � � [� H �*L � ,�� � � H � � ��L
� , G � � � � H �*L � , � � � H � � ��L
% � H � � ��L � , � H
	 , ^Z^Z_ ��L
� / G � �

Subcase 2.2:
� % � .

� is blocked at � G . Then, # G � � will not be blocked
at � G and

X G � � % ,2� � X+Y � G � , G � � � X+Y G � �G � �� ,2� � [� G � , G � � � [� G � �
� , � � � H �*L � , G � � � � H � � ��L
% , � � � H � � ��L H
	 , ^Z^Z_ ��L
� / G � �

This completes the proof of
X G � � � / G � � and the proof

of the theorem.

Based on Theorem 1, we obtain the following schedul-
ing algorithm:

1) For ��%Q�5���*�����4����� , calculate � H �.L according to
Equation (4).

2) For �&% �5���*�����4����� , do:

a) Calculate ,�� %�SUTWV G21 �+'W, G 1 .
b) Set) � %�, � � � H � � ��L .

This algorithm guarantees that the time /I��%�,�� � � H �ML
is sufficient for delivering message # � to the network
output. We call the message schedule produced by this
algorithm a conservative schedule. As in the last section,
we evaluate the network utilization by assuming that
,4�&%�, for all #$� s. Then, we have network utilization

6 % 6
� � 6

� � ����� � 6 5
% ,

) �
� ,

) �
� ����� � ,

) 5
% ���� � �

��� � ����� � �
� 5 ���7 �
	����

V. COMPARISONS AND CONCLUDING REMARKS

To simplify comparisons, we assume that all messages
have the same length, i.e., ,�� % , , for any � . Then we
have:

�������������������
����� �! -#" ��$&%�'
�)(" '�*�$&+-,�$&.�.�./$0+ - (�.1� " + - 2�3 .1�4 -#" ��$&%�'
�5$6*7(" '�*�$&+-,�$&.�.�./$0+ -)2 ,�(�./� " + - 2�8 .��
9:����� <; ��= -#" ')>1?�$0.�.�.1$@> -BA , (�./� " > - ./�4 -#" ')>1?�$0.�.�.1$@> -BA , (�./� " > - ./�

Comparing the two schedules based on the coefficients
of , , we have: - ��C ���D*E>GF H I J K L MN.�.�.�:���O�����������P�B���Q�R>GFGI LN*7FS>�* F�H I�I L�MN.�.�.9������ 1; �R>GHGLN*7JGF�>SJ�HN*7>�LG>�I�JGI�*7>N.�.�.
4 - ��C ���D*E>GF H I J K L MN.�.�.�:���O�����������P�B���Q�RFGIGLN*7FG>�*TF�H I�I L�MN*7H�HN.�.�.9������ 1; �R>GHGLN*7JGF�>SJ�HN*7>�LG>�I�JGI�*7>N.�.�.

The improvement of conservative schedule over
greedy schedule is obviously significant. For /<� s, no
value is larger, and all but the first are reduced. For
)*� s, all but the first three are reduced. These results
suggest that for linear wormhole-switched client-server
network real-time applications, client hosts requiring
more frequent communications with the server should
be placed closer to the server (network output). In some
applications, uniform period is preferred for all client
hosts. Consider the case that , � % , for ��� � � � . A
simple feasible message schedule for this case is letting
)*��%�� � � , and /0�R% �&�4, . For �C% , we have

6

��� * > F H I J K L M - � * > F H I J K L M4 - � L�* L�*EL�*TL�*EL�*EL�*EL�*7LGL�*TL�*
The network utilization is

6 % 6
� � 6 � � ����� � 6 5

% ,
) �
� ,

) �
� ����� � ,

)
5
% �

� � �
�

� � � ����� � �
� �7 �B�

In our linear network, we assumed that host � 5 is
connected to � 5 . Since there is no traffic from the left
of � 5 , � 5 can be directly connected to the input of
� 5 � � . In such a situation, slightly smaller values of)b�
and /0� with more complicated proofs can be achieved.
But such an improvement is insignificant. We assume
that � 5 is connected to � 5 for the sake of obtaining
cleaner closed-form expressions and simpler proofs.

Our study shows that under heavy traffic,) � s and / � s
are communication distance sensitive. There is a trade-
off between network utilization and values of)b� s and /0� s.
A couple of related problems arise. For example, how to
obtain better schedules in terms of smaller)b� and /5�
values? How to design message schedules with smaller
uniform periods? How to generalize our techniques to
networks of other topologies (such as trees)? These
problems may deserve further investigation.

REFERENCES

[1] Anjan K. V. and T.M. Pinkston, “DISHA: A Deadlock Recov-
ery Scheme for Fully Adaptive Routing,” Proceedings of the
9th International Parallel Processing Symposium, pp. 201-210,
1995.

[2] J.D. Allen et al., “Ariadne - An Adaptive Router for Fault-
Tolerant Multicomputers,” Proceedings the 21st International
Symposium on Computer Architecture, pp. 278-288, 1994.

[3] N.J. Boden et al., “Myrinet - A Gigabit Per Second Local Area
Network,” IEEE Micro, pp. 29-36, 1995.

[4] J. Carbonaro and F. Veroorn, “Cavallino: The Teraflops Router
and NIC,” Proceedings of Hot Interconnects Symposium IV,
1996.

[5] W.J. Dally and C.L. Seitz, “The torus Routing Chip,” Journal
of Distributed Computing, vol. 1, no. 3, pp. 187-196, 1986.

[6] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Transactions
on Computers, vol. C-36, no. 5, pp. 547-553, 1987.

[7] W.J. Dally et al., “Architecture and Implementation of the
Reliable Router,” Proceedings of Hot Interconnects Symposium
II, 1994.

[8] W.J. Dally and P. Song, “Design of Self-Timed VLSI Multicom-
puter Communication Controller,” Proceedings of International
Conference on Computer Design, pp. 230-234, 1897.

[9] J. Duato, S. Yalamanchili and L. Ni, Interconnection Networks,
An Engineering Approach, Morgan Kaufmann, 2003.

[10] J. Duato, A. Robles and F. Silla, “A Comparison of Router
Architectures for Virtual Cut-Through and Wormhole Switching
in a NOW Environment,”, Journal of Parallel and Distributed
Computing, 61, pp. 224-253, 2001.

[11] M. Galles, “Scalable Pipelined Interconnect for Distributed
Endpoint Routing: The SPIDER Chip,” Proceedings of Hot
Interconnects Symposium IV, 1996.

[12] R. Horst, “ServerNet Deadlock Avoidance and Fractahedral
Topologies,” Proceedings of the 10th International Parallel
Processing Symposium, pp. 274-280, 1996.

[13] S.L. Scott, “Synchronization and Communication in the T3E
Multiprocessor,” Proceedings of the 7th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, pp. 26-36, 1996.

[14] S.L. Scott and G. Thorson, “Optimized Routing in the Cray
T3D,” Proceedings of the Workshop on Parallel Computer
Routing and Communication, pp. 281-294, 1994.

[15] S.L. Scott and G. Thorson, “The Cray T3E Network: Adaptive
Routing in a High-Performance 3D Torus,” Proceedings of Hot
Interconnects Symposium IV, 1996.

[16] C.B. Stunkel et al., “The SP2 Communication Subsystem,”
Technical Report, IBM T.J. Watson Research Center, 1994.

